scispace - formally typeset
Search or ask a question
Proceedings ArticleDOI

ArcFace: Additive Angular Margin Loss for Deep Face Recognition

15 Jun 2019-pp 4690-4699
TL;DR: This paper presents arguably the most extensive experimental evaluation against all recent state-of-the-art face recognition methods on ten face recognition benchmarks, and shows that ArcFace consistently outperforms the state of the art and can be easily implemented with negligible computational overhead.
Abstract: One of the main challenges in feature learning using Deep Convolutional Neural Networks (DCNNs) for large-scale face recognition is the design of appropriate loss functions that can enhance the discriminative power. Centre loss penalises the distance between deep features and their corresponding class centres in the Euclidean space to achieve intra-class compactness. SphereFace assumes that the linear transformation matrix in the last fully connected layer can be used as a representation of the class centres in the angular space and therefore penalises the angles between deep features and their corresponding weights in a multiplicative way. Recently, a popular line of research is to incorporate margins in well-established loss functions in order to maximise face class separability. In this paper, we propose an Additive Angular Margin Loss (ArcFace) to obtain highly discriminative features for face recognition. The proposed ArcFace has a clear geometric interpretation due to its exact correspondence to geodesic distance on a hypersphere. We present arguably the most extensive experimental evaluation against all recent state-of-the-art face recognition methods on ten face recognition benchmarks which includes a new large-scale image database with trillions of pairs and a large-scale video dataset. We show that ArcFace consistently outperforms the state of the art and can be easily implemented with negligible computational overhead. To facilitate future research, the code has been made available.

Content maybe subject to copyright    Report

Citations
More filters
Posted Content
TL;DR: Li et al. as discussed by the authors proposed a multi-label transformer architecture with windows partitioning, in-window pixel attention, cross-window attention, which improved the performance of multilabel image classification.
Abstract: The task of multi-label image classification is to recognize all the object labels presented in an image. Though advancing for years, small objects, similar objects and objects with high conditional probability are still the main bottlenecks of previous convolutional neural network(CNN) based models, limited by convolutional kernels' representational capacity. Recent vision transformer networks utilize the self-attention mechanism to extract the feature of pixel granularity, which expresses richer local semantic information, while is insufficient for mining global spatial dependence. In this paper, we point out the three crucial problems that CNN-based methods encounter and explore the possibility of conducting specific transformer modules to settle them. We put forward a Multi-label Transformer architecture(MlTr) constructed with windows partitioning, in-window pixel attention, cross-window attention, particularly improving the performance of multi-label image classification tasks. The proposed MlTr shows state-of-the-art results on various prevalent multi-label datasets such as MS-COCO, Pascal-VOC, and NUS-WIDE with 88.5%, 95.8%, and 65.5% respectively. The code will be available soon at this https URL

7 citations

Posted Content
TL;DR: In the VoxCeleb Speaker Recognition Challenge (VoxSRC) 2019, this article proposed a fusion of 9 models and achieved first place in these two tracks of VoxSRC 2021.
Abstract: This report describes our submission to the track 1 and track 2 of the VoxCeleb Speaker Recognition Challenge 2021 (VoxSRC 2021). Both track 1 and track 2 share the same speaker verification system, which only uses VoxCeleb2-dev as our training set. This report explores several parts, including data augmentation, network structures, domain-based large margin fine-tuning, and back-end refinement. Our system is a fusion of 9 models and achieves first place in these two tracks of VoxSRC 2021. The minDCF of our submission is 0.1034, and the corresponding EER is 1.8460%.

7 citations

Proceedings ArticleDOI
TL;DR: IsoMax loss works as a seamless SoftMax loss drop-in replacement that significantly improves neural networks OOD detection performance and may be used as a baseline solution to be combined with current or future out-of-distribution detection techniques to achieve even higher results.
Abstract: Out-of-distribution (OOD) detection approaches usually present special requirements (e.g., hyperparameter validation, collection of outlier data) and produce side effects (e.g., classification accuracy drop, slower energy-inefficient inferences). We argue that these issues are a consequence of the SoftMax loss anisotropy and disagreement with the maximum entropy principle. Thus, we propose the IsoMax loss and the entropic score. The seamless drop-in replacement of the SoftMax loss by IsoMax loss requires neither additional data collection nor hyperparameter validation. The trained models do not exhibit classification accuracy drop and produce fast energy-efficient inferences. Moreover, our experiments show that training neural networks with IsoMax loss significantly improves their OOD detection performance. The IsoMax loss exhibits state-of-the-art performance under the mentioned conditions (fast energy-efficient inference, no classification accuracy drop, no collection of outlier data, and no hyperparameter validation), which we call the seamless OOD detection task. In future work, current OOD detection methods may replace the SoftMax loss with the IsoMax loss to improve their performance on the commonly studied non-seamless OOD detection problem.

7 citations


Cites background from "ArcFace: Additive Angular Margin Lo..."

  • ...We observed classification accuracy drop and low/oscillating performance when trying to integrate the entropic scale into the SoftMax loss or with cosine similarity [22], [31], [32]....

    [...]

Journal ArticleDOI
TL;DR: The SJTU X-LANCE Lab system for the three tracks in CNSRC 2022 explored the speaker embedding modeling ability of deep ResNet (Deeper r-vector) and ranks the first place in the track of speaker verification task.
Abstract: This technical report describes the SJTU X-LANCE Lab system for the three tracks in CNSRC 2022. In this challenge, we explored the speaker embedding modeling ability of deep ResNet (Deeper r-vector). All the systems are only trained on the Cnceleb training set and we use the same systems for the three tracks in CNSRC 2022. In this challenge, our system ranks the first place in the fixed track of speaker verification task. Our best single system and fusion system achieve 0.3164 and 0.2975 minDCF respectively. Besides, we submit the result of ResNet221 to the speaker retrieval track and achieve 0.4626 mAP. More importantly, we have helped the wespeaker [1] toolkit reproduce our result: https://github.com/wenet-e2e/wespeaker.

7 citations

Journal ArticleDOI
TL;DR: In order to improve the efficiency of enterprise accounting and improve the development of enterprise information system, Wang et al. as mentioned in this paper proposed the research of cloud computing, which can continuously integrate collected big data and process the data by categories, so that the data can be used most efficiently.
Abstract: With the development of science and technology and the application of big data technology, a new computing model based on the Internet has gradually been applied to all levels of society. This kind of computing technology relying on big data is also known as cloud computing, which can continuously integrate the collected big data and process the data by categories, so that the data can be used most efficiently. This will improve the user experience and enable users to enjoy the service of big data whenever and wherever. At the same time, advanced technology can also be combined with new service mode, which has become an important turning point in the development of modern service industry. For most enterprises, informatization is an inevitable development path. In order to improve the efficiency of enterprise accounting, we hope that the research of cloud computing can improve the efficiency of enterprise accounting and improve the development of enterprise information system.

7 citations

References
More filters
Proceedings ArticleDOI
27 Jun 2016
TL;DR: In this article, the authors proposed a residual learning framework to ease the training of networks that are substantially deeper than those used previously, which won the 1st place on the ILSVRC 2015 classification task.
Abstract: Deeper neural networks are more difficult to train. We present a residual learning framework to ease the training of networks that are substantially deeper than those used previously. We explicitly reformulate the layers as learning residual functions with reference to the layer inputs, instead of learning unreferenced functions. We provide comprehensive empirical evidence showing that these residual networks are easier to optimize, and can gain accuracy from considerably increased depth. On the ImageNet dataset we evaluate residual nets with a depth of up to 152 layers—8× deeper than VGG nets [40] but still having lower complexity. An ensemble of these residual nets achieves 3.57% error on the ImageNet test set. This result won the 1st place on the ILSVRC 2015 classification task. We also present analysis on CIFAR-10 with 100 and 1000 layers. The depth of representations is of central importance for many visual recognition tasks. Solely due to our extremely deep representations, we obtain a 28% relative improvement on the COCO object detection dataset. Deep residual nets are foundations of our submissions to ILSVRC & COCO 2015 competitions1, where we also won the 1st places on the tasks of ImageNet detection, ImageNet localization, COCO detection, and COCO segmentation.

123,388 citations

Journal Article
TL;DR: It is shown that dropout improves the performance of neural networks on supervised learning tasks in vision, speech recognition, document classification and computational biology, obtaining state-of-the-art results on many benchmark data sets.
Abstract: Deep neural nets with a large number of parameters are very powerful machine learning systems. However, overfitting is a serious problem in such networks. Large networks are also slow to use, making it difficult to deal with overfitting by combining the predictions of many different large neural nets at test time. Dropout is a technique for addressing this problem. The key idea is to randomly drop units (along with their connections) from the neural network during training. This prevents units from co-adapting too much. During training, dropout samples from an exponential number of different "thinned" networks. At test time, it is easy to approximate the effect of averaging the predictions of all these thinned networks by simply using a single unthinned network that has smaller weights. This significantly reduces overfitting and gives major improvements over other regularization methods. We show that dropout improves the performance of neural networks on supervised learning tasks in vision, speech recognition, document classification and computational biology, obtaining state-of-the-art results on many benchmark data sets.

33,597 citations

Proceedings Article
Sergey Ioffe1, Christian Szegedy1
06 Jul 2015
TL;DR: Applied to a state-of-the-art image classification model, Batch Normalization achieves the same accuracy with 14 times fewer training steps, and beats the original model by a significant margin.
Abstract: Training Deep Neural Networks is complicated by the fact that the distribution of each layer's inputs changes during training, as the parameters of the previous layers change. This slows down the training by requiring lower learning rates and careful parameter initialization, and makes it notoriously hard to train models with saturating nonlinearities. We refer to this phenomenon as internal covariate shift, and address the problem by normalizing layer inputs. Our method draws its strength from making normalization a part of the model architecture and performing the normalization for each training mini-batch. Batch Normalization allows us to use much higher learning rates and be less careful about initialization, and in some cases eliminates the need for Dropout. Applied to a state-of-the-art image classification model, Batch Normalization achieves the same accuracy with 14 times fewer training steps, and beats the original model by a significant margin. Using an ensemble of batch-normalized networks, we improve upon the best published result on ImageNet classification: reaching 4.82% top-5 test error, exceeding the accuracy of human raters.

30,843 citations

28 Oct 2017
TL;DR: An automatic differentiation module of PyTorch is described — a library designed to enable rapid research on machine learning models that focuses on differentiation of purely imperative programs, with a focus on extensibility and low overhead.
Abstract: In this article, we describe an automatic differentiation module of PyTorch — a library designed to enable rapid research on machine learning models. It builds upon a few projects, most notably Lua Torch, Chainer, and HIPS Autograd [4], and provides a high performance environment with easy access to automatic differentiation of models executed on different devices (CPU and GPU). To make prototyping easier, PyTorch does not follow the symbolic approach used in many other deep learning frameworks, but focuses on differentiation of purely imperative programs, with a focus on extensibility and low overhead. Note that this preprint is a draft of certain sections from an upcoming paper covering all PyTorch features.

13,268 citations

Posted Content
TL;DR: The TensorFlow interface and an implementation of that interface that is built at Google are described, which has been used for conducting research and for deploying machine learning systems into production across more than a dozen areas of computer science and other fields.
Abstract: TensorFlow is an interface for expressing machine learning algorithms, and an implementation for executing such algorithms. A computation expressed using TensorFlow can be executed with little or no change on a wide variety of heterogeneous systems, ranging from mobile devices such as phones and tablets up to large-scale distributed systems of hundreds of machines and thousands of computational devices such as GPU cards. The system is flexible and can be used to express a wide variety of algorithms, including training and inference algorithms for deep neural network models, and it has been used for conducting research and for deploying machine learning systems into production across more than a dozen areas of computer science and other fields, including speech recognition, computer vision, robotics, information retrieval, natural language processing, geographic information extraction, and computational drug discovery. This paper describes the TensorFlow interface and an implementation of that interface that we have built at Google. The TensorFlow API and a reference implementation were released as an open-source package under the Apache 2.0 license in November, 2015 and are available at www.tensorflow.org.

10,447 citations