scispace - formally typeset
Search or ask a question
Proceedings ArticleDOI

ArcFace: Additive Angular Margin Loss for Deep Face Recognition

15 Jun 2019-pp 4690-4699
TL;DR: This paper presents arguably the most extensive experimental evaluation against all recent state-of-the-art face recognition methods on ten face recognition benchmarks, and shows that ArcFace consistently outperforms the state of the art and can be easily implemented with negligible computational overhead.
Abstract: One of the main challenges in feature learning using Deep Convolutional Neural Networks (DCNNs) for large-scale face recognition is the design of appropriate loss functions that can enhance the discriminative power. Centre loss penalises the distance between deep features and their corresponding class centres in the Euclidean space to achieve intra-class compactness. SphereFace assumes that the linear transformation matrix in the last fully connected layer can be used as a representation of the class centres in the angular space and therefore penalises the angles between deep features and their corresponding weights in a multiplicative way. Recently, a popular line of research is to incorporate margins in well-established loss functions in order to maximise face class separability. In this paper, we propose an Additive Angular Margin Loss (ArcFace) to obtain highly discriminative features for face recognition. The proposed ArcFace has a clear geometric interpretation due to its exact correspondence to geodesic distance on a hypersphere. We present arguably the most extensive experimental evaluation against all recent state-of-the-art face recognition methods on ten face recognition benchmarks which includes a new large-scale image database with trillions of pairs and a large-scale video dataset. We show that ArcFace consistently outperforms the state of the art and can be easily implemented with negligible computational overhead. To facilitate future research, the code has been made available.

Content maybe subject to copyright    Report

Citations
More filters
Journal ArticleDOI
TL;DR: In this article , the authors proposed a method that is able to reconstruct photorealistic render-ready 3D facial geometry and BRDF from a single "in-the-wild" image.
Abstract: Over the last years, with the advent of Generative Adversarial Networks (GANs), many face analysis tasks have accomplished astounding performance, with applications including, but not limited to, face generation and 3D face reconstruction from a single “in-the-wild” image. Nevertheless, to the best of our knowledge, there is no method which can produce render-ready high-resolution 3D faces from “in-the-wild” images and this can be attributed to the: (a) scarcity of available data for training, and (b) lack of robust methodologies that can successfully be applied on very high-resolution data. In this paper, we introduce the first method that is able to reconstruct photorealistic render-ready 3D facial geometry and BRDF from a single “in-the-wild” image. To achieve this, we capture a large dataset of facial shape and reflectance, which we have made public. Moreover, we define a fast and photorealistic differentiable rendering methodology with accurate facial skin diffuse and specular reflection, self-occlusion and subsurface scattering approximation. With this, we train a network that disentangles the facial diffuse and specular reflectance components from a mesh and texture with baked illumination, scanned or reconstructed with a 3DMM fitting method. As we demonstrate in a series of qualitative and quantitative experiments, our method outperforms the existing arts by a significant margin and reconstructs authentic, 4K by 6K-resolution 3D faces from a single low-resolution image, that are ready to be rendered in various applications and bridge the uncanny valley.

6 citations

Posted Content
TL;DR: In this article, the authors investigated the effect of masked attacks on face presentation attack detection (PAD) performance by using seven state-of-the-art PAD algorithms under intra-and cross-database scenarios.
Abstract: The ongoing COVID-19 pandemic has lead to massive public health issues. Face masks have become one of the most efficient ways to reduce coronavirus transmission. This makes face recognition (FR) a challenging task as several discriminative features are hidden. Moreover, face presentation attack detection (PAD) is crucial to ensure the security of FR systems. In contrast to growing numbers of masked FR studies, the impact of masked attacks on PAD has not been explored. Therefore, we present novel attacks with real masks placed on presentations and attacks with subjects wearing masks to reflect the current real-world situation. Furthermore, this study investigates the effect of masked attacks on PAD performance by using seven state-of-the-art PAD algorithms under intra- and cross-database scenarios. We also evaluate the vulnerability of FR systems on masked attacks. The experiments show that real masked attacks pose a serious threat to the operation and security of FR systems.

6 citations

Posted Content
TL;DR: In this paper, a joint evaluation and in-depth analyses of the face verification performance of human experts in comparison to state-of-the-art automatic face recognition solutions is provided. But, the study concludes with a set of take-home messages on different aspects of the correlation between the verification behavior of human and machine.
Abstract: The recent COVID-19 pandemic has increased the focus on hygienic and contactless identity verification methods. However, the pandemic led to the wide use of face masks, essential to keep the pandemic under control. The effect of wearing a mask on face recognition in a collaborative environment is currently sensitive yet understudied issue. Recent reports have tackled this by evaluating the masked probe effect on the performance of automatic face recognition solutions. However, such solutions can fail in certain processes, leading to performing the verification task by a human expert. This work provides a joint evaluation and in-depth analyses of the face verification performance of human experts in comparison to state-of-the-art automatic face recognition solutions. This involves an extensive evaluation with 12 human experts and 4 automatic recognition solutions. The study concludes with a set of take-home messages on different aspects of the correlation between the verification behavior of human and machine.

6 citations

Proceedings ArticleDOI
06 May 2022
TL;DR: A reverse engineer of four primary proctoring suites used in U.S. law school and state attorney licensing exams finds that despite promises of high-security, all their anti-cheating measures can be trivially bypassed and can pose significant user security risks.
Abstract: Educators are rapidly switching to remote proctoring and examination software for their testing needs, both due to the COVID-19 pandemic and the expanding virtualization of the education sector. State boards are increasingly utilizing these software for high stakes legal and medical licensing exams. Three key concerns arise with the use of these complex software: exam integrity, exam procedural fairness, and exam-taker security and privacy. We conduct the first technical analysis of each of these concerns through a case study of four primary proctoring suites used in U.S. law school and state attorney licensing exams. We reverse engineer these proctoring suites and find that despite promises of high-security, all their anti-cheating measures can be trivially bypassed and can pose significant user security risks. We evaluate current facial recognition classifiers alongside the classifier used by Examplify, the legal exam proctoring suite with the largest market share, to ascertain their accuracy and determine whether faces with certain skin tones are more readily flagged for cheating. Finally, we offer recommendations to improve the integrity and fairness of the remotely proctored exam experience.

6 citations

Proceedings ArticleDOI
20 Jul 2022
TL;DR: A controllable face synthesis model that can mimic the distribution of target datasets in a style latent space with precise control over the diversity and degree of synthesis and yields significant performance gains on unconstrained bench-marks.
Abstract: Although significant advances have been made in face recognition (FR), FR in unconstrained environments remains challenging due to the domain gap between the semi-constrained training datasets and unconstrained testing scenarios. To address this problem, we propose a controllable face synthesis model (CFSM) that can mimic the distribution of target datasets in a style latent space. CFSM learns a linear subspace with orthogonal bases in the style latent space with precise control over the diversity and degree of synthesis. Furthermore, the pre-trained synthesis model can be guided by the FR model, making the resulting images more beneficial for FR model training. Besides, target dataset distributions are characterized by the learned orthogonal bases, which can be utilized to measure the distributional similarity among face datasets. Our approach yields significant performance gains on unconstrained benchmarks, such as IJB-B, IJB-C, TinyFace and IJB-S (+5.76% Rank1).

6 citations

References
More filters
Proceedings ArticleDOI
27 Jun 2016
TL;DR: In this article, the authors proposed a residual learning framework to ease the training of networks that are substantially deeper than those used previously, which won the 1st place on the ILSVRC 2015 classification task.
Abstract: Deeper neural networks are more difficult to train. We present a residual learning framework to ease the training of networks that are substantially deeper than those used previously. We explicitly reformulate the layers as learning residual functions with reference to the layer inputs, instead of learning unreferenced functions. We provide comprehensive empirical evidence showing that these residual networks are easier to optimize, and can gain accuracy from considerably increased depth. On the ImageNet dataset we evaluate residual nets with a depth of up to 152 layers—8× deeper than VGG nets [40] but still having lower complexity. An ensemble of these residual nets achieves 3.57% error on the ImageNet test set. This result won the 1st place on the ILSVRC 2015 classification task. We also present analysis on CIFAR-10 with 100 and 1000 layers. The depth of representations is of central importance for many visual recognition tasks. Solely due to our extremely deep representations, we obtain a 28% relative improvement on the COCO object detection dataset. Deep residual nets are foundations of our submissions to ILSVRC & COCO 2015 competitions1, where we also won the 1st places on the tasks of ImageNet detection, ImageNet localization, COCO detection, and COCO segmentation.

123,388 citations

Journal Article
TL;DR: It is shown that dropout improves the performance of neural networks on supervised learning tasks in vision, speech recognition, document classification and computational biology, obtaining state-of-the-art results on many benchmark data sets.
Abstract: Deep neural nets with a large number of parameters are very powerful machine learning systems. However, overfitting is a serious problem in such networks. Large networks are also slow to use, making it difficult to deal with overfitting by combining the predictions of many different large neural nets at test time. Dropout is a technique for addressing this problem. The key idea is to randomly drop units (along with their connections) from the neural network during training. This prevents units from co-adapting too much. During training, dropout samples from an exponential number of different "thinned" networks. At test time, it is easy to approximate the effect of averaging the predictions of all these thinned networks by simply using a single unthinned network that has smaller weights. This significantly reduces overfitting and gives major improvements over other regularization methods. We show that dropout improves the performance of neural networks on supervised learning tasks in vision, speech recognition, document classification and computational biology, obtaining state-of-the-art results on many benchmark data sets.

33,597 citations

Proceedings Article
Sergey Ioffe1, Christian Szegedy1
06 Jul 2015
TL;DR: Applied to a state-of-the-art image classification model, Batch Normalization achieves the same accuracy with 14 times fewer training steps, and beats the original model by a significant margin.
Abstract: Training Deep Neural Networks is complicated by the fact that the distribution of each layer's inputs changes during training, as the parameters of the previous layers change. This slows down the training by requiring lower learning rates and careful parameter initialization, and makes it notoriously hard to train models with saturating nonlinearities. We refer to this phenomenon as internal covariate shift, and address the problem by normalizing layer inputs. Our method draws its strength from making normalization a part of the model architecture and performing the normalization for each training mini-batch. Batch Normalization allows us to use much higher learning rates and be less careful about initialization, and in some cases eliminates the need for Dropout. Applied to a state-of-the-art image classification model, Batch Normalization achieves the same accuracy with 14 times fewer training steps, and beats the original model by a significant margin. Using an ensemble of batch-normalized networks, we improve upon the best published result on ImageNet classification: reaching 4.82% top-5 test error, exceeding the accuracy of human raters.

30,843 citations

28 Oct 2017
TL;DR: An automatic differentiation module of PyTorch is described — a library designed to enable rapid research on machine learning models that focuses on differentiation of purely imperative programs, with a focus on extensibility and low overhead.
Abstract: In this article, we describe an automatic differentiation module of PyTorch — a library designed to enable rapid research on machine learning models. It builds upon a few projects, most notably Lua Torch, Chainer, and HIPS Autograd [4], and provides a high performance environment with easy access to automatic differentiation of models executed on different devices (CPU and GPU). To make prototyping easier, PyTorch does not follow the symbolic approach used in many other deep learning frameworks, but focuses on differentiation of purely imperative programs, with a focus on extensibility and low overhead. Note that this preprint is a draft of certain sections from an upcoming paper covering all PyTorch features.

13,268 citations

Posted Content
TL;DR: The TensorFlow interface and an implementation of that interface that is built at Google are described, which has been used for conducting research and for deploying machine learning systems into production across more than a dozen areas of computer science and other fields.
Abstract: TensorFlow is an interface for expressing machine learning algorithms, and an implementation for executing such algorithms. A computation expressed using TensorFlow can be executed with little or no change on a wide variety of heterogeneous systems, ranging from mobile devices such as phones and tablets up to large-scale distributed systems of hundreds of machines and thousands of computational devices such as GPU cards. The system is flexible and can be used to express a wide variety of algorithms, including training and inference algorithms for deep neural network models, and it has been used for conducting research and for deploying machine learning systems into production across more than a dozen areas of computer science and other fields, including speech recognition, computer vision, robotics, information retrieval, natural language processing, geographic information extraction, and computational drug discovery. This paper describes the TensorFlow interface and an implementation of that interface that we have built at Google. The TensorFlow API and a reference implementation were released as an open-source package under the Apache 2.0 license in November, 2015 and are available at www.tensorflow.org.

10,447 citations