scispace - formally typeset
Search or ask a question
Proceedings ArticleDOI

ArcFace: Additive Angular Margin Loss for Deep Face Recognition

15 Jun 2019-pp 4690-4699
TL;DR: This paper presents arguably the most extensive experimental evaluation against all recent state-of-the-art face recognition methods on ten face recognition benchmarks, and shows that ArcFace consistently outperforms the state of the art and can be easily implemented with negligible computational overhead.
Abstract: One of the main challenges in feature learning using Deep Convolutional Neural Networks (DCNNs) for large-scale face recognition is the design of appropriate loss functions that can enhance the discriminative power. Centre loss penalises the distance between deep features and their corresponding class centres in the Euclidean space to achieve intra-class compactness. SphereFace assumes that the linear transformation matrix in the last fully connected layer can be used as a representation of the class centres in the angular space and therefore penalises the angles between deep features and their corresponding weights in a multiplicative way. Recently, a popular line of research is to incorporate margins in well-established loss functions in order to maximise face class separability. In this paper, we propose an Additive Angular Margin Loss (ArcFace) to obtain highly discriminative features for face recognition. The proposed ArcFace has a clear geometric interpretation due to its exact correspondence to geodesic distance on a hypersphere. We present arguably the most extensive experimental evaluation against all recent state-of-the-art face recognition methods on ten face recognition benchmarks which includes a new large-scale image database with trillions of pairs and a large-scale video dataset. We show that ArcFace consistently outperforms the state of the art and can be easily implemented with negligible computational overhead. To facilitate future research, the code has been made available.

Content maybe subject to copyright    Report

Citations
More filters
Journal ArticleDOI
TL;DR: Wang et al. as discussed by the authors presented a new facial feature descriptor called Fused Cross Lattice Pattern of Phase Congruency (FCLPPC) for high accuracy homogeneous and heterogeneous illumination invariant intra/inter-modality face recognition.

6 citations

Proceedings ArticleDOI
28 May 2021
TL;DR: Wang et al. as mentioned in this paper proposed an image classification method of cassava leaf disease based on residual network (ResNet), which applied the idea of attention mechanism to the network model, which made the feature extraction area focus on the feature of the leaf disease.
Abstract: For the low efficiency of the traditional visual inspection and diagnosis method for cassava leaf disease detection by agricultural experts, this paper proposes an image classification method of cassava leaf disease based on residual network (ResNet). Based on the residual network model, the idea of attention mechanism is applied to the network model, which makes the feature extraction area focus on the feature of cassava leaf disease.

6 citations

Posted Content
TL;DR: In this article, the authors evaluate the efficacy of deep face recognition in identifying deepfakes, using different loss functions and deepfake generation techniques. But, their performance drops significantly in cross-dataset evaluation with samples generated using advanced deepfake generating techniques.
Abstract: Significant advances in deep learning have obtained hallmark accuracy rates for various computer vision applications. However, advances in deep generative models have also led to the generation of very realistic fake content, also known as deepfakes, causing a threat to privacy, democracy, and national security. Most of the current deepfake detection methods are deemed as a binary classification problem in distinguishing authentic images or videos from fake ones using two-class convolutional neural networks (CNNs). These methods are based on detecting visual artifacts, temporal or color inconsistencies produced by deep generative models. However, these methods require a large amount of real and fake data for model training and their performance drops significantly in cross dataset evaluation with samples generated using advanced deepfake generation techniques. In this paper, we thoroughly evaluate the efficacy of deep face recognition in identifying deepfakes, using different loss functions and deepfake generation techniques. Experimental investigations on challenging Celeb-DF and FaceForensics++ deepfake datasets suggest the efficacy of deep face recognition in identifying deepfakes over two-class CNNs and the ocular modality. Reported results suggest a maximum Area Under Curve (AUC) of 0.98 and an Equal Error Rate (EER) of 7.1% in detecting deepfakes using face recognition on the Celeb-DF dataset. This EER is lower by 16.6% compared to the EER obtained for the two-class CNN and the ocular modality on the Celeb-DF dataset. Further on the FaceForensics++ dataset, an AUC of 0.99 and EER of 2.04% were obtained. The use of biometric facial recognition technology has the advantage of bypassing the need for a large amount of fake data for model training and obtaining better generalizability to evolving deepfake creation techniques.

6 citations

Journal ArticleDOI
TL;DR: Zhang et al. as mentioned in this paper used a UV energy-based generative adversarial network (UV EB-GAN) to discriminate whether a UV map from the alignment network is well aligned by defining the generative loss of the completion network as the energy.
Abstract: The three-dimensional morphable model (3DMM) is the most widely used representative model for obtaining a three-dimensional (3-D) face from a target on an image. Although 3DMMs have demonstrated the powerful capability to represent various facial shapes on natural images, they are limited to capturing texture variations of in-the-wild human faces. Based on the fact that fitting a 3-D facial model to an image determines the corresponding UV map, we propose a novel method for facial fitting and synthesis by competitively training two deep learning networks for facial alignment and UV texture completion. When the completion network is trained using well-aligned UV maps, it can model facial textures precisely and, consequently, fill the missing regions more completely. Accordingly, we use a UV completion network, denoted as a UV energy-based generative adversarial network (UV EB-GAN), to discriminate whether a UV map from the alignment network is well aligned by defining the generative loss of the completion network as the energy. Competitive learning facilitates training the completion network without ground-truth facial UV maps and training the alignment network without hard constraints and regularization terms. The proposed network can be trained in an end-to-end manner. The facial texture, albedo, lighting parameters, and 3-D facial shape can be obtained through this network. The results of the experiments on 2-D alignment, 3-D reconstruction, texture synthesis, and illumination estimation verified that the proposed method achieves remarkable improvements over the state-of-the-art methods.

6 citations

Journal ArticleDOI
TL;DR: Wang et al. as discussed by the authors presented a new facial feature descriptor called Fused Cross Lattice Pattern of Phase Congruency (FCLPPC) for high accuracy, homogeneous and heterogeneous illumination invariant cross-modal face recognition.

6 citations

References
More filters
Proceedings ArticleDOI
27 Jun 2016
TL;DR: In this article, the authors proposed a residual learning framework to ease the training of networks that are substantially deeper than those used previously, which won the 1st place on the ILSVRC 2015 classification task.
Abstract: Deeper neural networks are more difficult to train. We present a residual learning framework to ease the training of networks that are substantially deeper than those used previously. We explicitly reformulate the layers as learning residual functions with reference to the layer inputs, instead of learning unreferenced functions. We provide comprehensive empirical evidence showing that these residual networks are easier to optimize, and can gain accuracy from considerably increased depth. On the ImageNet dataset we evaluate residual nets with a depth of up to 152 layers—8× deeper than VGG nets [40] but still having lower complexity. An ensemble of these residual nets achieves 3.57% error on the ImageNet test set. This result won the 1st place on the ILSVRC 2015 classification task. We also present analysis on CIFAR-10 with 100 and 1000 layers. The depth of representations is of central importance for many visual recognition tasks. Solely due to our extremely deep representations, we obtain a 28% relative improvement on the COCO object detection dataset. Deep residual nets are foundations of our submissions to ILSVRC & COCO 2015 competitions1, where we also won the 1st places on the tasks of ImageNet detection, ImageNet localization, COCO detection, and COCO segmentation.

123,388 citations

Journal Article
TL;DR: It is shown that dropout improves the performance of neural networks on supervised learning tasks in vision, speech recognition, document classification and computational biology, obtaining state-of-the-art results on many benchmark data sets.
Abstract: Deep neural nets with a large number of parameters are very powerful machine learning systems. However, overfitting is a serious problem in such networks. Large networks are also slow to use, making it difficult to deal with overfitting by combining the predictions of many different large neural nets at test time. Dropout is a technique for addressing this problem. The key idea is to randomly drop units (along with their connections) from the neural network during training. This prevents units from co-adapting too much. During training, dropout samples from an exponential number of different "thinned" networks. At test time, it is easy to approximate the effect of averaging the predictions of all these thinned networks by simply using a single unthinned network that has smaller weights. This significantly reduces overfitting and gives major improvements over other regularization methods. We show that dropout improves the performance of neural networks on supervised learning tasks in vision, speech recognition, document classification and computational biology, obtaining state-of-the-art results on many benchmark data sets.

33,597 citations

Proceedings Article
Sergey Ioffe1, Christian Szegedy1
06 Jul 2015
TL;DR: Applied to a state-of-the-art image classification model, Batch Normalization achieves the same accuracy with 14 times fewer training steps, and beats the original model by a significant margin.
Abstract: Training Deep Neural Networks is complicated by the fact that the distribution of each layer's inputs changes during training, as the parameters of the previous layers change. This slows down the training by requiring lower learning rates and careful parameter initialization, and makes it notoriously hard to train models with saturating nonlinearities. We refer to this phenomenon as internal covariate shift, and address the problem by normalizing layer inputs. Our method draws its strength from making normalization a part of the model architecture and performing the normalization for each training mini-batch. Batch Normalization allows us to use much higher learning rates and be less careful about initialization, and in some cases eliminates the need for Dropout. Applied to a state-of-the-art image classification model, Batch Normalization achieves the same accuracy with 14 times fewer training steps, and beats the original model by a significant margin. Using an ensemble of batch-normalized networks, we improve upon the best published result on ImageNet classification: reaching 4.82% top-5 test error, exceeding the accuracy of human raters.

30,843 citations

28 Oct 2017
TL;DR: An automatic differentiation module of PyTorch is described — a library designed to enable rapid research on machine learning models that focuses on differentiation of purely imperative programs, with a focus on extensibility and low overhead.
Abstract: In this article, we describe an automatic differentiation module of PyTorch — a library designed to enable rapid research on machine learning models. It builds upon a few projects, most notably Lua Torch, Chainer, and HIPS Autograd [4], and provides a high performance environment with easy access to automatic differentiation of models executed on different devices (CPU and GPU). To make prototyping easier, PyTorch does not follow the symbolic approach used in many other deep learning frameworks, but focuses on differentiation of purely imperative programs, with a focus on extensibility and low overhead. Note that this preprint is a draft of certain sections from an upcoming paper covering all PyTorch features.

13,268 citations

Posted Content
TL;DR: The TensorFlow interface and an implementation of that interface that is built at Google are described, which has been used for conducting research and for deploying machine learning systems into production across more than a dozen areas of computer science and other fields.
Abstract: TensorFlow is an interface for expressing machine learning algorithms, and an implementation for executing such algorithms. A computation expressed using TensorFlow can be executed with little or no change on a wide variety of heterogeneous systems, ranging from mobile devices such as phones and tablets up to large-scale distributed systems of hundreds of machines and thousands of computational devices such as GPU cards. The system is flexible and can be used to express a wide variety of algorithms, including training and inference algorithms for deep neural network models, and it has been used for conducting research and for deploying machine learning systems into production across more than a dozen areas of computer science and other fields, including speech recognition, computer vision, robotics, information retrieval, natural language processing, geographic information extraction, and computational drug discovery. This paper describes the TensorFlow interface and an implementation of that interface that we have built at Google. The TensorFlow API and a reference implementation were released as an open-source package under the Apache 2.0 license in November, 2015 and are available at www.tensorflow.org.

10,447 citations