scispace - formally typeset
Search or ask a question
Proceedings ArticleDOI

ArcFace: Additive Angular Margin Loss for Deep Face Recognition

15 Jun 2019-pp 4690-4699
TL;DR: This paper presents arguably the most extensive experimental evaluation against all recent state-of-the-art face recognition methods on ten face recognition benchmarks, and shows that ArcFace consistently outperforms the state of the art and can be easily implemented with negligible computational overhead.
Abstract: One of the main challenges in feature learning using Deep Convolutional Neural Networks (DCNNs) for large-scale face recognition is the design of appropriate loss functions that can enhance the discriminative power. Centre loss penalises the distance between deep features and their corresponding class centres in the Euclidean space to achieve intra-class compactness. SphereFace assumes that the linear transformation matrix in the last fully connected layer can be used as a representation of the class centres in the angular space and therefore penalises the angles between deep features and their corresponding weights in a multiplicative way. Recently, a popular line of research is to incorporate margins in well-established loss functions in order to maximise face class separability. In this paper, we propose an Additive Angular Margin Loss (ArcFace) to obtain highly discriminative features for face recognition. The proposed ArcFace has a clear geometric interpretation due to its exact correspondence to geodesic distance on a hypersphere. We present arguably the most extensive experimental evaluation against all recent state-of-the-art face recognition methods on ten face recognition benchmarks which includes a new large-scale image database with trillions of pairs and a large-scale video dataset. We show that ArcFace consistently outperforms the state of the art and can be easily implemented with negligible computational overhead. To facilitate future research, the code has been made available.

Content maybe subject to copyright    Report

Citations
More filters
Journal ArticleDOI
TL;DR: A comprehensive study on the recognition of masked faces by using state-of-the-art loss functions against various compounding factors by using facial landmarks to synthesize the facial mask for each face in several benchmark databases with different challenging factors.
Abstract: As we have been seriously hit by the COVID-19 pandemic, wearing a facial mask is a crucial action that we can take for our protection. This paper reports a comprehensive study on the recognition of masked faces. By using facial landmarks, we synthesize the facial mask for each face in several benchmark databases with different challenging factors. The IJB-B and IJB-C databases are selected for evaluating the performance against the variation across pose, illumination and expression (PIE). The FG-Net database is selected for evaluating the performance across age. The SCface is chosen for evaluating the performance on low-resolution images. The MS-1MV2 is exploited as the base training set. We use the ResNet-100 as the feature embedding network connected to state-of-the-art loss functions designed for tackling face recognition. The loss functions considered include the Center Loss, the Marginal Loss, the Angular Softmax Loss, the Large Margin Cosine Loss and the Additive Angular Margin Loss. Both verification and identification are conducted in our evaluation. The performances for recognizing faces with and without the synthetic masks are all evaluated for a complete comparison. The network with the best loss function for recognizing synthetic masked faces is then assessed on a real masked face database, the cleaned RMFRD (c-RMFRD) dataset. Compared with a human user test on the c-RMFRD, the network trained on the synthetic masked faces outperforms human vision for a large gap. Our contributions are fourfold. The first is a comprehensive study for tackling masked face recognition by using state-of-the-art loss functions against various compounding factors. For comparison purpose, the second is another comprehensive study on the recognition of faces without masks by using the same loss functions against the same challenging factors. The third is the verification of the network trained on synthetic masked faces for tackling the real masked face recognition with performance better than human inspectors. The fourth is the highlight on the challenges of masked face recognition and the directions for future research. Our code, trained models and dataset are available via the project GitHub site.

5 citations

Posted Content
TL;DR: The Label-Aware ranked loss as mentioned in this paper minimizes when data points of different labels are ranked and laid at uniform angles between each other in the embedding space to improve the accuracy.
Abstract: In this paper, we introduce the Label-Aware Ranked loss, a novel metric loss function. Compared to the state-of-the-art Deep Metric Learning losses, this function takes advantage of the ranked ordering of the labels in regression problems. To this end, we first show that the loss minimises when datapoints of different labels are ranked and laid at uniform angles between each other in the embedding space. Then, to measure its performance, we apply the proposed loss on a regression task of people counting with a short-range radar in a challenging scenario, namely a vehicle cabin. The introduced approach improves the accuracy as well as the neighboring labels accuracy up to 83.0% and 99.9%: An increase of 6.7%and 2.1% on state-of-the-art methods, respectively.

5 citations

Proceedings ArticleDOI
21 Aug 2022
TL;DR: In this paper , the authors proposed QuantFace, a solution based on low-bit precision format model quantization to reduce the required computational cost of the existing face recognition models without the need for designing a particular architecture or accessing real training data.
Abstract: Deep learning-based face recognition models follow the common trend in deep neural networks by utilizing full-precision floating-point networks with high computational costs. Deploying such networks in use-cases constrained by computational requirements is often infeasible due to the large memory required by the full-precision model. Previous compact face recognition approaches proposed to design special compact architectures and train them from scratch using real training data, which may not be available in a real-world scenario due to privacy concerns. We present in this work the QuantFace solution based on low-bit precision format model quantization. QuantFace reduces the required computational cost of the existing face recognition models without the need for designing a particular architecture or accessing real training data. QuantFace introduces privacy-friendly synthetic face data to the quantization process to mitigate potential privacy concerns and issues related to the accessibility to real training data. Through extensive evaluation experiments on seven benchmarks and four network architectures, we demonstrate that QuantFace can successfully reduce the model size up to 5x while maintaining, to a large degree, the verification performance of the full-precision model without accessing real training datasets. All training codes are publicly available 1 .

5 citations

Book ChapterDOI
01 Jan 2023
TL;DR: The AIM 2022 challenge on Instagram filter removal as mentioned in this paper has introduced the methods and the results of AIM-2019 challenge on filter removal, and the proposed solutions are ranked in terms of the PSNR value with respect to the original images.
Abstract: This paper introduces the methods and the results of AIM 2022 challenge on Instagram Filter Removal. Social media filters transform the images by consecutive non-linear operations, and the feature maps of the original content may be interpolated into a different domain. This reduces the overall performance of the recent deep learning strategies. The main goal of this challenge is to produce realistic and visually plausible images where the impact of the filters applied is mitigated while preserving the content. The proposed solutions are ranked in terms of the PSNR value with respect to the original images. There are two prior studies on this task as the baseline, and a total of 9 teams have competed in the final phase of the challenge. The comparison of qualitative results of the proposed solutions and the benchmark for the challenge are presented in this report.

5 citations

Journal ArticleDOI
TL;DR: This paper proposes a new method, named one person one mask (OPOM), to generate person-specific (class-wise) universal masks by optimizing each training sample in the direction away from the feature subspace of the source identity.
Abstract: While convenient in daily life, face recognition technologies also raise privacy concerns for regular users on the social media since they could be used to analyze face images and videos, efficiently and surreptitiously without any security restrictions. In this paper, we investigate the face privacy protection from a technology standpoint based on a new type of customized cloak, which can be applied to all the images of a regular user, to prevent malicious face recognition systems from uncovering their identity. Specifically, we propose a new method, named one person one mask (OPOM), to generate person-specific (class-wise) universal masks by optimizing each training sample in the direction away from the feature subspace of the source identity. To make full use of the limited training images, we investigate several modeling methods, including affine hulls, class centers and convex hulls, to obtain a better description of the feature subspace of source identities. The effectiveness of the proposed method is evaluated on both common and celebrity datasets against black-box face recognition models with different loss functions and network architectures. In addition, we discuss the advantages and potential problems of the proposed method. In particular, we conduct an application study on the privacy protection of a video dataset, Sherlock, to demonstrate the potential practical usage of the proposed method.

5 citations

References
More filters
Proceedings ArticleDOI
27 Jun 2016
TL;DR: In this article, the authors proposed a residual learning framework to ease the training of networks that are substantially deeper than those used previously, which won the 1st place on the ILSVRC 2015 classification task.
Abstract: Deeper neural networks are more difficult to train. We present a residual learning framework to ease the training of networks that are substantially deeper than those used previously. We explicitly reformulate the layers as learning residual functions with reference to the layer inputs, instead of learning unreferenced functions. We provide comprehensive empirical evidence showing that these residual networks are easier to optimize, and can gain accuracy from considerably increased depth. On the ImageNet dataset we evaluate residual nets with a depth of up to 152 layers—8× deeper than VGG nets [40] but still having lower complexity. An ensemble of these residual nets achieves 3.57% error on the ImageNet test set. This result won the 1st place on the ILSVRC 2015 classification task. We also present analysis on CIFAR-10 with 100 and 1000 layers. The depth of representations is of central importance for many visual recognition tasks. Solely due to our extremely deep representations, we obtain a 28% relative improvement on the COCO object detection dataset. Deep residual nets are foundations of our submissions to ILSVRC & COCO 2015 competitions1, where we also won the 1st places on the tasks of ImageNet detection, ImageNet localization, COCO detection, and COCO segmentation.

123,388 citations

Journal Article
TL;DR: It is shown that dropout improves the performance of neural networks on supervised learning tasks in vision, speech recognition, document classification and computational biology, obtaining state-of-the-art results on many benchmark data sets.
Abstract: Deep neural nets with a large number of parameters are very powerful machine learning systems. However, overfitting is a serious problem in such networks. Large networks are also slow to use, making it difficult to deal with overfitting by combining the predictions of many different large neural nets at test time. Dropout is a technique for addressing this problem. The key idea is to randomly drop units (along with their connections) from the neural network during training. This prevents units from co-adapting too much. During training, dropout samples from an exponential number of different "thinned" networks. At test time, it is easy to approximate the effect of averaging the predictions of all these thinned networks by simply using a single unthinned network that has smaller weights. This significantly reduces overfitting and gives major improvements over other regularization methods. We show that dropout improves the performance of neural networks on supervised learning tasks in vision, speech recognition, document classification and computational biology, obtaining state-of-the-art results on many benchmark data sets.

33,597 citations

Proceedings Article
Sergey Ioffe1, Christian Szegedy1
06 Jul 2015
TL;DR: Applied to a state-of-the-art image classification model, Batch Normalization achieves the same accuracy with 14 times fewer training steps, and beats the original model by a significant margin.
Abstract: Training Deep Neural Networks is complicated by the fact that the distribution of each layer's inputs changes during training, as the parameters of the previous layers change. This slows down the training by requiring lower learning rates and careful parameter initialization, and makes it notoriously hard to train models with saturating nonlinearities. We refer to this phenomenon as internal covariate shift, and address the problem by normalizing layer inputs. Our method draws its strength from making normalization a part of the model architecture and performing the normalization for each training mini-batch. Batch Normalization allows us to use much higher learning rates and be less careful about initialization, and in some cases eliminates the need for Dropout. Applied to a state-of-the-art image classification model, Batch Normalization achieves the same accuracy with 14 times fewer training steps, and beats the original model by a significant margin. Using an ensemble of batch-normalized networks, we improve upon the best published result on ImageNet classification: reaching 4.82% top-5 test error, exceeding the accuracy of human raters.

30,843 citations

28 Oct 2017
TL;DR: An automatic differentiation module of PyTorch is described — a library designed to enable rapid research on machine learning models that focuses on differentiation of purely imperative programs, with a focus on extensibility and low overhead.
Abstract: In this article, we describe an automatic differentiation module of PyTorch — a library designed to enable rapid research on machine learning models. It builds upon a few projects, most notably Lua Torch, Chainer, and HIPS Autograd [4], and provides a high performance environment with easy access to automatic differentiation of models executed on different devices (CPU and GPU). To make prototyping easier, PyTorch does not follow the symbolic approach used in many other deep learning frameworks, but focuses on differentiation of purely imperative programs, with a focus on extensibility and low overhead. Note that this preprint is a draft of certain sections from an upcoming paper covering all PyTorch features.

13,268 citations

Posted Content
TL;DR: The TensorFlow interface and an implementation of that interface that is built at Google are described, which has been used for conducting research and for deploying machine learning systems into production across more than a dozen areas of computer science and other fields.
Abstract: TensorFlow is an interface for expressing machine learning algorithms, and an implementation for executing such algorithms. A computation expressed using TensorFlow can be executed with little or no change on a wide variety of heterogeneous systems, ranging from mobile devices such as phones and tablets up to large-scale distributed systems of hundreds of machines and thousands of computational devices such as GPU cards. The system is flexible and can be used to express a wide variety of algorithms, including training and inference algorithms for deep neural network models, and it has been used for conducting research and for deploying machine learning systems into production across more than a dozen areas of computer science and other fields, including speech recognition, computer vision, robotics, information retrieval, natural language processing, geographic information extraction, and computational drug discovery. This paper describes the TensorFlow interface and an implementation of that interface that we have built at Google. The TensorFlow API and a reference implementation were released as an open-source package under the Apache 2.0 license in November, 2015 and are available at www.tensorflow.org.

10,447 citations