scispace - formally typeset
Search or ask a question
Proceedings ArticleDOI

ArcFace: Additive Angular Margin Loss for Deep Face Recognition

15 Jun 2019-pp 4690-4699
TL;DR: This paper presents arguably the most extensive experimental evaluation against all recent state-of-the-art face recognition methods on ten face recognition benchmarks, and shows that ArcFace consistently outperforms the state of the art and can be easily implemented with negligible computational overhead.
Abstract: One of the main challenges in feature learning using Deep Convolutional Neural Networks (DCNNs) for large-scale face recognition is the design of appropriate loss functions that can enhance the discriminative power. Centre loss penalises the distance between deep features and their corresponding class centres in the Euclidean space to achieve intra-class compactness. SphereFace assumes that the linear transformation matrix in the last fully connected layer can be used as a representation of the class centres in the angular space and therefore penalises the angles between deep features and their corresponding weights in a multiplicative way. Recently, a popular line of research is to incorporate margins in well-established loss functions in order to maximise face class separability. In this paper, we propose an Additive Angular Margin Loss (ArcFace) to obtain highly discriminative features for face recognition. The proposed ArcFace has a clear geometric interpretation due to its exact correspondence to geodesic distance on a hypersphere. We present arguably the most extensive experimental evaluation against all recent state-of-the-art face recognition methods on ten face recognition benchmarks which includes a new large-scale image database with trillions of pairs and a large-scale video dataset. We show that ArcFace consistently outperforms the state of the art and can be easily implemented with negligible computational overhead. To facilitate future research, the code has been made available.

Content maybe subject to copyright    Report

Citations
More filters
Proceedings ArticleDOI
01 Oct 2019
TL;DR: This work introduces the first hybrid loss function that jointly performs classification and clustering in a single formulation based on an `affinity measure' in Euclidean space that leads to the following benefits: direct enforcement of maximum margin constraints on classification boundaries and flexibility to learn multiple class prototypes to support diversity and discriminability in feature space.
Abstract: Real-world object classes appear in imbalanced ratios. This poses a significant challenge for classifiers which get biased towards frequent classes. We hypothesize that improving the generalization capability of a classifier should improve learning on imbalanced datasets. Here, we introduce the first hybrid loss function that jointly performs classification and clustering in a single formulation. Our approach is based on an `affinity measure' in Euclidean space that leads to the following benefits: (1) direct enforcement of maximum margin constraints on classification boundaries, (2) a tractable way to ensure uniformly spaced and equidistant cluster centers, (3) flexibility to learn multiple class prototypes to support diversity and discriminability in feature space. Our extensive experiments demonstrate the significant performance improvements on visual classification and verification tasks on multiple imbalanced datasets. The proposed loss can easily be plugged in any deep architecture as a differentiable block and demonstrates robustness against different levels of data imbalance and corrupted labels.

70 citations


Cites background from "ArcFace: Additive Angular Margin Lo..."

  • ...Among these, Large-margin softmax [34] enforces inter-class separability directly on the dot-product similarity while SphereFace [33] and ArcFace [10] enforce multiplicative and additive angular margins on the hypersphere manifold, respectively....

    [...]

  • ...Enforcing margin between classes: Note that some variants of soft-max loss introduce angle based margin constraints [33, 10], however, the margins in angular domain are computationally expensive and implemented only as approximations due to intractability....

    [...]

  • ...Remarkably, some recent efforts focus on introducing max-margin constraints within the soft-max loss function [10, 34, 33]....

    [...]

Proceedings ArticleDOI
14 Jun 2020
Abstract: Generalized zero-shot learning aims to recognize images from seen and unseen domains. Recent methods focus on learning a unified semantic-aligned visual representation to transfer knowledge between two domains, while ignoring the effect of semantic-free visual representation in alleviating the biased recognition problem. In this paper, we propose a novel Domain-aware Visual Bias Eliminating (DVBE) network that constructs two complementary visual representations, i.e., semantic-free and semantic-aligned, to treat seen and unseen domains separately. Specifically, we explore cross-attentive second-order visual statistics to compact the semantic-free representation, and design an adaptive margin Softmax to maximize inter-class divergences. Thus, the semantic-free representation becomes discriminative enough to not only predict seen class accurately but also filter out unseen images, i.e., domain detection, based on the predicted class entropy. For unseen images, we automatically search an optimal semantic-visual alignment architecture, rather than manual designs, to predict unseen classes. With accurate domain detection, the biased recognition problem towards the seen domain is significantly reduced. Experiments on five benchmarks for classification and segmentation show that DVBE outperforms existing methods by averaged 5.7% improvement.

69 citations

Posted Content
Xu Xiang1, Shuai Wang1, Houjun Huang, Yanmin Qian1, Kai Yu1 
TL;DR: Three different margin based losses which not only separate classes but also demand a fixed margin between classes are introduced to deep speaker embedding learning and it could be demonstrated that the margin is the key to obtain more discriminative speaker embeddings.
Abstract: Recently, speaker embeddings extracted from a speaker discriminative deep neural network (DNN) yield better performance than the conventional methods such as i-vector. In most cases, the DNN speaker classifier is trained using cross entropy loss with softmax. However, this kind of loss function does not explicitly encourage inter-class separability and intra-class compactness. As a result, the embeddings are not optimal for speaker recognition tasks. In this paper, to address this issue, three different margin based losses which not only separate classes but also demand a fixed margin between classes are introduced to deep speaker embedding learning. It could be demonstrated that the margin is the key to obtain more discriminative speaker embeddings. Experiments are conducted on two public text independent tasks: VoxCeleb1 and Speaker in The Wild (SITW). The proposed approach can achieve the state-of-the-art performance, with 25% ~ 30% equal error rate (EER) reduction on both tasks when compared to strong baselines using cross entropy loss with softmax, obtaining 2.238% EER on VoxCeleb1 test set and 2.761% EER on SITW core-core test set, respectively.

67 citations


Cites background from "ArcFace: Additive Angular Margin Lo..."

  • ...In this work, to encourage discriminative embedding learning, three losses that impose a fixed margin between classes are studied: angular softmax loss (denoted by A-Softmax loss) [9], additive margin softmax loss (denoted by AMSoftmax loss) [10, 11] and additive angular margin loss (denoted by AAM-Softmax loss) [12]....

    [...]

Proceedings ArticleDOI
14 Jun 2020
TL;DR: Zhang et al. as mentioned in this paper proposed a novel concept to measure face quality based on an arbitrary face recognition model by determining the embedding variations generated from random subnetworks of a face model, the robustness of a sample representation and thus, its quality is estimated.
Abstract: Face image quality is an important factor to enable high-performance face recognition systems. Face quality assessment aims at estimating the suitability of a face image for the purpose of recognition. Previous work proposed supervised solutions that require artificially or human labelled quality values. However, both labelling mechanisms are error prone as they do not rely on a clear definition of quality and may not know the best characteristics for the utilized face recognition system. Avoiding the use of inaccurate quality labels, we proposed a novel concept to measure face quality based on an arbitrary face recognition model. By determining the embedding variations generated from random subnetworks of a face model, the robustness of a sample representation and thus, its quality is estimated. The experiments are conducted in a cross-database evaluation setting on three publicly available databases. We compare our proposed solution on two face embeddings against six state-of-the-art approaches from academia and industry. The results show that our unsupervised solution outperforms all other approaches in the majority of the investigated scenarios. In contrast to previous works, the proposed solution shows a stable performance over all scenarios. Utilizing the deployed face recognition model for our face quality assessment methodology avoids the training phase completely and further outperforms all baseline approaches by a large margin. Our solution can be easily integrated into current face recognition systems, and can be modified to other tasks beyond face recognition.

67 citations

Proceedings ArticleDOI
01 Nov 2020
TL;DR: A magnitude estimation network that is combined with a modified ResNet x-vector system to generate embeddings whose inner product is able to produce calibrated scores with increased discrimination and calibration gains at multiple operating points is presented.
Abstract: We present a magnitude estimation network that is combined with a modified ResNet x-vector system to generate embeddings whose inner product is able to produce calibrated scores with increased discrimination. A three-step training procedure is used. First, the network is trained using short segments and a multi-class cross-entropy loss with angular margin softmax. During the second step, only a reduced subset of the DNN parameters are refined using full-length recordings. Finally, the magnitude estimation network is trained using a binary crossentropy loss over pairs of target and non-target trials. The resulting system is evaluated on 4 widely-used benchmarks and provides significant discrimination and calibration gains at multiple operating points.

66 citations


Cites background from "ArcFace: Additive Angular Margin Lo..."

  • ...A number of variants have been proposed [21, 28] to reduce the interclass variance by introducing the notion of a margin penalty to the target class logit....

    [...]

References
More filters
Proceedings ArticleDOI
27 Jun 2016
TL;DR: In this article, the authors proposed a residual learning framework to ease the training of networks that are substantially deeper than those used previously, which won the 1st place on the ILSVRC 2015 classification task.
Abstract: Deeper neural networks are more difficult to train. We present a residual learning framework to ease the training of networks that are substantially deeper than those used previously. We explicitly reformulate the layers as learning residual functions with reference to the layer inputs, instead of learning unreferenced functions. We provide comprehensive empirical evidence showing that these residual networks are easier to optimize, and can gain accuracy from considerably increased depth. On the ImageNet dataset we evaluate residual nets with a depth of up to 152 layers—8× deeper than VGG nets [40] but still having lower complexity. An ensemble of these residual nets achieves 3.57% error on the ImageNet test set. This result won the 1st place on the ILSVRC 2015 classification task. We also present analysis on CIFAR-10 with 100 and 1000 layers. The depth of representations is of central importance for many visual recognition tasks. Solely due to our extremely deep representations, we obtain a 28% relative improvement on the COCO object detection dataset. Deep residual nets are foundations of our submissions to ILSVRC & COCO 2015 competitions1, where we also won the 1st places on the tasks of ImageNet detection, ImageNet localization, COCO detection, and COCO segmentation.

123,388 citations

Journal Article
TL;DR: It is shown that dropout improves the performance of neural networks on supervised learning tasks in vision, speech recognition, document classification and computational biology, obtaining state-of-the-art results on many benchmark data sets.
Abstract: Deep neural nets with a large number of parameters are very powerful machine learning systems. However, overfitting is a serious problem in such networks. Large networks are also slow to use, making it difficult to deal with overfitting by combining the predictions of many different large neural nets at test time. Dropout is a technique for addressing this problem. The key idea is to randomly drop units (along with their connections) from the neural network during training. This prevents units from co-adapting too much. During training, dropout samples from an exponential number of different "thinned" networks. At test time, it is easy to approximate the effect of averaging the predictions of all these thinned networks by simply using a single unthinned network that has smaller weights. This significantly reduces overfitting and gives major improvements over other regularization methods. We show that dropout improves the performance of neural networks on supervised learning tasks in vision, speech recognition, document classification and computational biology, obtaining state-of-the-art results on many benchmark data sets.

33,597 citations

Proceedings Article
Sergey Ioffe1, Christian Szegedy1
06 Jul 2015
TL;DR: Applied to a state-of-the-art image classification model, Batch Normalization achieves the same accuracy with 14 times fewer training steps, and beats the original model by a significant margin.
Abstract: Training Deep Neural Networks is complicated by the fact that the distribution of each layer's inputs changes during training, as the parameters of the previous layers change. This slows down the training by requiring lower learning rates and careful parameter initialization, and makes it notoriously hard to train models with saturating nonlinearities. We refer to this phenomenon as internal covariate shift, and address the problem by normalizing layer inputs. Our method draws its strength from making normalization a part of the model architecture and performing the normalization for each training mini-batch. Batch Normalization allows us to use much higher learning rates and be less careful about initialization, and in some cases eliminates the need for Dropout. Applied to a state-of-the-art image classification model, Batch Normalization achieves the same accuracy with 14 times fewer training steps, and beats the original model by a significant margin. Using an ensemble of batch-normalized networks, we improve upon the best published result on ImageNet classification: reaching 4.82% top-5 test error, exceeding the accuracy of human raters.

30,843 citations

28 Oct 2017
TL;DR: An automatic differentiation module of PyTorch is described — a library designed to enable rapid research on machine learning models that focuses on differentiation of purely imperative programs, with a focus on extensibility and low overhead.
Abstract: In this article, we describe an automatic differentiation module of PyTorch — a library designed to enable rapid research on machine learning models. It builds upon a few projects, most notably Lua Torch, Chainer, and HIPS Autograd [4], and provides a high performance environment with easy access to automatic differentiation of models executed on different devices (CPU and GPU). To make prototyping easier, PyTorch does not follow the symbolic approach used in many other deep learning frameworks, but focuses on differentiation of purely imperative programs, with a focus on extensibility and low overhead. Note that this preprint is a draft of certain sections from an upcoming paper covering all PyTorch features.

13,268 citations

Posted Content
TL;DR: The TensorFlow interface and an implementation of that interface that is built at Google are described, which has been used for conducting research and for deploying machine learning systems into production across more than a dozen areas of computer science and other fields.
Abstract: TensorFlow is an interface for expressing machine learning algorithms, and an implementation for executing such algorithms. A computation expressed using TensorFlow can be executed with little or no change on a wide variety of heterogeneous systems, ranging from mobile devices such as phones and tablets up to large-scale distributed systems of hundreds of machines and thousands of computational devices such as GPU cards. The system is flexible and can be used to express a wide variety of algorithms, including training and inference algorithms for deep neural network models, and it has been used for conducting research and for deploying machine learning systems into production across more than a dozen areas of computer science and other fields, including speech recognition, computer vision, robotics, information retrieval, natural language processing, geographic information extraction, and computational drug discovery. This paper describes the TensorFlow interface and an implementation of that interface that we have built at Google. The TensorFlow API and a reference implementation were released as an open-source package under the Apache 2.0 license in November, 2015 and are available at www.tensorflow.org.

10,447 citations