scispace - formally typeset
Search or ask a question
Proceedings ArticleDOI

ArcFace: Additive Angular Margin Loss for Deep Face Recognition

15 Jun 2019-pp 4690-4699
TL;DR: This paper presents arguably the most extensive experimental evaluation against all recent state-of-the-art face recognition methods on ten face recognition benchmarks, and shows that ArcFace consistently outperforms the state of the art and can be easily implemented with negligible computational overhead.
Abstract: One of the main challenges in feature learning using Deep Convolutional Neural Networks (DCNNs) for large-scale face recognition is the design of appropriate loss functions that can enhance the discriminative power. Centre loss penalises the distance between deep features and their corresponding class centres in the Euclidean space to achieve intra-class compactness. SphereFace assumes that the linear transformation matrix in the last fully connected layer can be used as a representation of the class centres in the angular space and therefore penalises the angles between deep features and their corresponding weights in a multiplicative way. Recently, a popular line of research is to incorporate margins in well-established loss functions in order to maximise face class separability. In this paper, we propose an Additive Angular Margin Loss (ArcFace) to obtain highly discriminative features for face recognition. The proposed ArcFace has a clear geometric interpretation due to its exact correspondence to geodesic distance on a hypersphere. We present arguably the most extensive experimental evaluation against all recent state-of-the-art face recognition methods on ten face recognition benchmarks which includes a new large-scale image database with trillions of pairs and a large-scale video dataset. We show that ArcFace consistently outperforms the state of the art and can be easily implemented with negligible computational overhead. To facilitate future research, the code has been made available.

Content maybe subject to copyright    Report

Citations
More filters
Journal ArticleDOI
TL;DR: In this paper , a training-free conditional diffusion model (FreeDoM) is proposed to guide the generation process without requiring training, which can be applied to a broad range of applications.
Abstract: Recently, conditional diffusion models have gained popularity in numerous applications due to their exceptional generation ability. However, many existing methods are training-required. They need to train a time-dependent classifier or a condition-dependent score estimator, which increases the cost of constructing conditional diffusion models and is inconvenient to transfer across different conditions. Some current works aim to overcome this limitation by proposing training-free solutions, but most can only be applied to a specific category of tasks and not to more general conditions. In this work, we propose a training-Free conditional Diffusion Model (FreeDoM) used for various conditions. Specifically, we leverage off-the-shelf pre-trained networks, such as a face detection model, to construct time-independent energy functions, which guide the generation process without requiring training. Furthermore, because the construction of the energy function is very flexible and adaptable to various conditions, our proposed FreeDoM has a broader range of applications than existing training-free methods. FreeDoM is advantageous in its simplicity, effectiveness, and low cost. Experiments demonstrate that FreeDoM is effective for various conditions and suitable for diffusion models of diverse data domains, including image and latent code domains.

4 citations

Proceedings ArticleDOI
Vladislav Sovrasov1, Dmitry Sidnev1
10 Jan 2021
TL;DR: Zhang et al. as discussed by the authors proposed to use the metric learning objective, namely AM-Softmax loss, and some additional training practices to build well-generalizing, yet, computationally efficient models.
Abstract: This work considers the problem of domain shift in person re-identification. Being trained on one dataset, a reidentification model usually performs much worse on unseen data. Partially this gap is caused by the relatively small scale of person re-identification datasets (compared to face recognition ones, for instance), but it is also related to training objectives. We propose to use the metric learning objective, namely AM-Softmax loss, and some additional training practices to build well-generalizing, yet, computationally efficient models. We use recently proposed Omni-Scale Network (OSNet) architecture combined with several training tricks and architecture adjustments to obtain state-of-the art results in cross-domain generalization problem on a large-scale MSMT17 dataset in three setups: MSMT17-all→DukeMTMC, MSMT17-train→Market1501 and MSMT17-all→Market1501. Training code and the models are available online in the GitHub repository11https://github.com/openvinotoolkit/training_extensions/tree/develop/pytorch_toolkit/object_reidentitication/person_reidentitication.

4 citations

Proceedings ArticleDOI
01 Dec 2020
TL;DR: Wang et al. as mentioned in this paper proposed a hybrid model consisting of two stages to generate visually pleasing de-identified face images according to a single input, while preserving visual similarity with the original face to retain data usability.
Abstract: As more and more personal photos are shared and tagged in social media, security and privacy protection are becoming an unprecedentedly focus of attention. Avoiding privacy risks such as unintended verification, becomes increasingly challenging. To enable people to enjoy uploading photos without having to consider these privacy concerns, it is crucial to study techniques that allow individuals to limit the identity information leaked in visual data. In this paper, we propose a novel hybrid model consists of two stages to generate visually pleasing de-identified face images according to a single input. Meanwhile, we successfully preserve visual similarity with the original face to retain data usability. Our approach combines latest advances in GAN-based face generation with well-designed adjustable randomness. In our experiments we show visually pleasing de-identified output of our method while preserving a high similarity to the original image content. Moreover, our method adapts well to the verificator of unknown structure, which further improves the practical value in our real life.

4 citations

Journal ArticleDOI
TL;DR: The SDR method adopts attention mechanism to iteratively search for high- response regions in images, and uses this as a clue to locate local discriminative regions and the LDR method is proposed to learn compact within category and sparse between categories representation from the raw image and local images.
Abstract: SUMMARY Local discriminative regions play important roles in fine- grained image analysis tasks. How to locate local discriminative regions with only category label and learn discriminative representation from these regions have been hot spots. In our work, we propose Searching Discriminative Regions (SDR) and Learning Discriminative Regions (LDR) method to search and learn local discriminative regions in images. The SDR method adopts attention mechanism to iteratively search for high- response regions in images, and uses this as a clue to locate local discriminative regions. Moreover, the LDR method is proposed to learn compact within category and sparse between categories representation from the raw image and local images. Experimental results show that our proposed ap- proach achieves excellent performance in both fine-grained image retrieval and classification tasks, which demonstrates its e ff ectiveness.

4 citations

Journal ArticleDOI
TL;DR: In this article , the authors propose a dynamic training data dropout (DTDD) method to dynamically filter the noise in the training database and gradually form a stable refined database for model learning.
Abstract: Learning with noise is a practically challenging problem in deep face recognition. Despite the success of large margin softmax loss functions, these methods are designed for clean face databases. Considering the inevitable noise in the large scale databases, we first analyze the performance of noise in the training databases. For noise-robust deep face recognition, we propose a dynamic training data dropout (DTDD) method to dynamically filter the noise in the training database and gradually form a stable refined database for model learning. Specifically, we leverage the information provided by the model predictions of accumulated training epochs, which can distinguish regular samples and noise effectively and accurately. The proposed DTDD method is easy and stable for implementation, and can be combined with existing state-of-the-art loss functions and network architectures. Extensive experiments on CASIA-WebFace, VGGFace2, and MS-Celeb-1 M databases empirically demonstrate that our proposed method can robustly train deep face recognition models in the presence of label noise and low quality images.

4 citations

References
More filters
Proceedings ArticleDOI
27 Jun 2016
TL;DR: In this article, the authors proposed a residual learning framework to ease the training of networks that are substantially deeper than those used previously, which won the 1st place on the ILSVRC 2015 classification task.
Abstract: Deeper neural networks are more difficult to train. We present a residual learning framework to ease the training of networks that are substantially deeper than those used previously. We explicitly reformulate the layers as learning residual functions with reference to the layer inputs, instead of learning unreferenced functions. We provide comprehensive empirical evidence showing that these residual networks are easier to optimize, and can gain accuracy from considerably increased depth. On the ImageNet dataset we evaluate residual nets with a depth of up to 152 layers—8× deeper than VGG nets [40] but still having lower complexity. An ensemble of these residual nets achieves 3.57% error on the ImageNet test set. This result won the 1st place on the ILSVRC 2015 classification task. We also present analysis on CIFAR-10 with 100 and 1000 layers. The depth of representations is of central importance for many visual recognition tasks. Solely due to our extremely deep representations, we obtain a 28% relative improvement on the COCO object detection dataset. Deep residual nets are foundations of our submissions to ILSVRC & COCO 2015 competitions1, where we also won the 1st places on the tasks of ImageNet detection, ImageNet localization, COCO detection, and COCO segmentation.

123,388 citations

Journal Article
TL;DR: It is shown that dropout improves the performance of neural networks on supervised learning tasks in vision, speech recognition, document classification and computational biology, obtaining state-of-the-art results on many benchmark data sets.
Abstract: Deep neural nets with a large number of parameters are very powerful machine learning systems. However, overfitting is a serious problem in such networks. Large networks are also slow to use, making it difficult to deal with overfitting by combining the predictions of many different large neural nets at test time. Dropout is a technique for addressing this problem. The key idea is to randomly drop units (along with their connections) from the neural network during training. This prevents units from co-adapting too much. During training, dropout samples from an exponential number of different "thinned" networks. At test time, it is easy to approximate the effect of averaging the predictions of all these thinned networks by simply using a single unthinned network that has smaller weights. This significantly reduces overfitting and gives major improvements over other regularization methods. We show that dropout improves the performance of neural networks on supervised learning tasks in vision, speech recognition, document classification and computational biology, obtaining state-of-the-art results on many benchmark data sets.

33,597 citations

Proceedings Article
Sergey Ioffe1, Christian Szegedy1
06 Jul 2015
TL;DR: Applied to a state-of-the-art image classification model, Batch Normalization achieves the same accuracy with 14 times fewer training steps, and beats the original model by a significant margin.
Abstract: Training Deep Neural Networks is complicated by the fact that the distribution of each layer's inputs changes during training, as the parameters of the previous layers change. This slows down the training by requiring lower learning rates and careful parameter initialization, and makes it notoriously hard to train models with saturating nonlinearities. We refer to this phenomenon as internal covariate shift, and address the problem by normalizing layer inputs. Our method draws its strength from making normalization a part of the model architecture and performing the normalization for each training mini-batch. Batch Normalization allows us to use much higher learning rates and be less careful about initialization, and in some cases eliminates the need for Dropout. Applied to a state-of-the-art image classification model, Batch Normalization achieves the same accuracy with 14 times fewer training steps, and beats the original model by a significant margin. Using an ensemble of batch-normalized networks, we improve upon the best published result on ImageNet classification: reaching 4.82% top-5 test error, exceeding the accuracy of human raters.

30,843 citations

28 Oct 2017
TL;DR: An automatic differentiation module of PyTorch is described — a library designed to enable rapid research on machine learning models that focuses on differentiation of purely imperative programs, with a focus on extensibility and low overhead.
Abstract: In this article, we describe an automatic differentiation module of PyTorch — a library designed to enable rapid research on machine learning models. It builds upon a few projects, most notably Lua Torch, Chainer, and HIPS Autograd [4], and provides a high performance environment with easy access to automatic differentiation of models executed on different devices (CPU and GPU). To make prototyping easier, PyTorch does not follow the symbolic approach used in many other deep learning frameworks, but focuses on differentiation of purely imperative programs, with a focus on extensibility and low overhead. Note that this preprint is a draft of certain sections from an upcoming paper covering all PyTorch features.

13,268 citations

Posted Content
TL;DR: The TensorFlow interface and an implementation of that interface that is built at Google are described, which has been used for conducting research and for deploying machine learning systems into production across more than a dozen areas of computer science and other fields.
Abstract: TensorFlow is an interface for expressing machine learning algorithms, and an implementation for executing such algorithms. A computation expressed using TensorFlow can be executed with little or no change on a wide variety of heterogeneous systems, ranging from mobile devices such as phones and tablets up to large-scale distributed systems of hundreds of machines and thousands of computational devices such as GPU cards. The system is flexible and can be used to express a wide variety of algorithms, including training and inference algorithms for deep neural network models, and it has been used for conducting research and for deploying machine learning systems into production across more than a dozen areas of computer science and other fields, including speech recognition, computer vision, robotics, information retrieval, natural language processing, geographic information extraction, and computational drug discovery. This paper describes the TensorFlow interface and an implementation of that interface that we have built at Google. The TensorFlow API and a reference implementation were released as an open-source package under the Apache 2.0 license in November, 2015 and are available at www.tensorflow.org.

10,447 citations