scispace - formally typeset
Search or ask a question
Proceedings ArticleDOI

ArcFace: Additive Angular Margin Loss for Deep Face Recognition

15 Jun 2019-pp 4690-4699
TL;DR: This paper presents arguably the most extensive experimental evaluation against all recent state-of-the-art face recognition methods on ten face recognition benchmarks, and shows that ArcFace consistently outperforms the state of the art and can be easily implemented with negligible computational overhead.
Abstract: One of the main challenges in feature learning using Deep Convolutional Neural Networks (DCNNs) for large-scale face recognition is the design of appropriate loss functions that can enhance the discriminative power. Centre loss penalises the distance between deep features and their corresponding class centres in the Euclidean space to achieve intra-class compactness. SphereFace assumes that the linear transformation matrix in the last fully connected layer can be used as a representation of the class centres in the angular space and therefore penalises the angles between deep features and their corresponding weights in a multiplicative way. Recently, a popular line of research is to incorporate margins in well-established loss functions in order to maximise face class separability. In this paper, we propose an Additive Angular Margin Loss (ArcFace) to obtain highly discriminative features for face recognition. The proposed ArcFace has a clear geometric interpretation due to its exact correspondence to geodesic distance on a hypersphere. We present arguably the most extensive experimental evaluation against all recent state-of-the-art face recognition methods on ten face recognition benchmarks which includes a new large-scale image database with trillions of pairs and a large-scale video dataset. We show that ArcFace consistently outperforms the state of the art and can be easily implemented with negligible computational overhead. To facilitate future research, the code has been made available.

Content maybe subject to copyright    Report

Citations
More filters
Journal ArticleDOI
TL;DR: This work presents a scheme for privacy-preserving collaborative learning that checks the participants’ data quality while guaranteeing data and model privacy, and proposes a novel metric called weight similarity that is securely computed and used to check whether a participant can be categorized as a reliable participant or not.

3 citations


Cites background from "ArcFace: Additive Angular Margin Lo..."

  • ..., cancer detection [7, 18], face recognition [5, 9], speech recognition [21, 1], playing the game of Go [29], etc....

    [...]

Proceedings ArticleDOI
01 Sep 2021
TL;DR: In this paper, a more practical attack scenario, the probe-agnostic attack, was defined and a simple and effective method, PAMTAM, was proposed to improve the attack success rate for probeagnostic attacks.
Abstract: DNN-based face verification systems are vulnerable to adversarial examples. The previous paper’s evaluation protocol (scenario), which we called the probe-dependent attack scenario, was unrealistic. We define a more practical attack scenario, the probe-agnostic attack. We empirically show that these attacks are more challenging than probe-dependent ones. We propose a simple and effective method, PAMTAM, to improve the attack success rate for probe-agnostic attacks. We show that PAMTAM successfully improves the attack success rate in a wide variety of experimental settings.

3 citations

Book ChapterDOI
10 Sep 2021
TL;DR: In this paper, an attribute disentanglement and generative network is constructed to encode two parts of the face, which are the identity (facial features like mouth, nose and eyes) and expression (including expression, pose and illumination).
Abstract: With the identity information in face data more closely related to personal credit and property security, people pay increasing attention to the protection of face data privacy. In different tasks, people have various requirements for face de-identification (De-ID), so we propose a systematical solution compatible for these De-ID operations. Firstly, an attribute disentanglement and generative network is constructed to encode two parts of the face, which are the identity (facial features like mouth, nose and eyes) and expression (including expression, pose and illumination). Through face swapping, we can remove the original ID completely. Secondly, we add an adversarial vector mapping network to perturb the latent code of the face image, different from previous traditional adversarial methods. Through this, we can construct unrestricted adversarial image to decrease ID similarity recognized by model. Our method can flexibly de-identify the face data in various ways and the processed images have high image quality.

3 citations

Book ChapterDOI
TL;DR: Li et al. as mentioned in this paper designed a new 3DMM-assisted warping-based face re-actment architecture which consists of two fast and efficient sub-networks, i.e., a u-shaped rendering network to reenact faces driven by head poses and facial motion fields, and a hierarchical coarse-to-fine motion network to predict facial motion field guided by different scales of landmark images.
Abstract: AbstractExisting one-shot face reenactment methods either present obvious artifacts in large pose transformations, or cannot well-preserve the identity information in the source images, or fail to meet the requirements of real-time applications due to the intensive amount of computation involved. In this paper, we introduce \(\text {Face2Face}^\rho \), the first Real-time High-resolution and One-shot (RHO, \(\rho \)) face reenactment framework. To achieve this goal, we designed a new 3DMM-assisted warping-based face reenactment architecture which consists of two fast and efficient sub-networks, i.e., a u-shaped rendering network to reenact faces driven by head poses and facial motion fields, and a hierarchical coarse-to-fine motion network to predict facial motion fields guided by different scales of landmark images. Compared with existing state-of-the-art works, \(\text {Face2Face}^\rho \) can produce results of equal or better visual quality, yet with significantly less time and memory overhead. We also demonstrate that \(\text {Face2Face}^\rho \) can achieve real-time performance for face images of \(1440\times 1440\) resolution with a desktop GPU and \(256\times 256\) resolution with a mobile CPU.KeywordsFace reenactmentOne-shotReal-timeHigh-resolution

3 citations

Book ChapterDOI
08 Jun 2022
TL;DR: In this article , the authors proposed an optimization framework to provide robust visual privacy protection along the human action recognition pipeline, which parameterizes the camera lens to successfully degrade the quality of videos to inhibit privacy attributes and protect against adversarial attacks while maintaining relevant features for activity recognition.
Abstract: The accelerated use of digital cameras prompts an increasing concern about privacy and security, particularly in applications such as action recognition. In this paper, we propose an optimizing framework to provide robust visual privacy protection along the human action recognition pipeline. Our framework parameterizes the camera lens to successfully degrade the quality of the videos to inhibit privacy attributes and protect against adversarial attacks while maintaining relevant features for activity recognition. We validate our approach with extensive simulations and hardware experiments.

3 citations

References
More filters
Proceedings ArticleDOI
27 Jun 2016
TL;DR: In this article, the authors proposed a residual learning framework to ease the training of networks that are substantially deeper than those used previously, which won the 1st place on the ILSVRC 2015 classification task.
Abstract: Deeper neural networks are more difficult to train. We present a residual learning framework to ease the training of networks that are substantially deeper than those used previously. We explicitly reformulate the layers as learning residual functions with reference to the layer inputs, instead of learning unreferenced functions. We provide comprehensive empirical evidence showing that these residual networks are easier to optimize, and can gain accuracy from considerably increased depth. On the ImageNet dataset we evaluate residual nets with a depth of up to 152 layers—8× deeper than VGG nets [40] but still having lower complexity. An ensemble of these residual nets achieves 3.57% error on the ImageNet test set. This result won the 1st place on the ILSVRC 2015 classification task. We also present analysis on CIFAR-10 with 100 and 1000 layers. The depth of representations is of central importance for many visual recognition tasks. Solely due to our extremely deep representations, we obtain a 28% relative improvement on the COCO object detection dataset. Deep residual nets are foundations of our submissions to ILSVRC & COCO 2015 competitions1, where we also won the 1st places on the tasks of ImageNet detection, ImageNet localization, COCO detection, and COCO segmentation.

123,388 citations

Journal Article
TL;DR: It is shown that dropout improves the performance of neural networks on supervised learning tasks in vision, speech recognition, document classification and computational biology, obtaining state-of-the-art results on many benchmark data sets.
Abstract: Deep neural nets with a large number of parameters are very powerful machine learning systems. However, overfitting is a serious problem in such networks. Large networks are also slow to use, making it difficult to deal with overfitting by combining the predictions of many different large neural nets at test time. Dropout is a technique for addressing this problem. The key idea is to randomly drop units (along with their connections) from the neural network during training. This prevents units from co-adapting too much. During training, dropout samples from an exponential number of different "thinned" networks. At test time, it is easy to approximate the effect of averaging the predictions of all these thinned networks by simply using a single unthinned network that has smaller weights. This significantly reduces overfitting and gives major improvements over other regularization methods. We show that dropout improves the performance of neural networks on supervised learning tasks in vision, speech recognition, document classification and computational biology, obtaining state-of-the-art results on many benchmark data sets.

33,597 citations

Proceedings Article
Sergey Ioffe1, Christian Szegedy1
06 Jul 2015
TL;DR: Applied to a state-of-the-art image classification model, Batch Normalization achieves the same accuracy with 14 times fewer training steps, and beats the original model by a significant margin.
Abstract: Training Deep Neural Networks is complicated by the fact that the distribution of each layer's inputs changes during training, as the parameters of the previous layers change. This slows down the training by requiring lower learning rates and careful parameter initialization, and makes it notoriously hard to train models with saturating nonlinearities. We refer to this phenomenon as internal covariate shift, and address the problem by normalizing layer inputs. Our method draws its strength from making normalization a part of the model architecture and performing the normalization for each training mini-batch. Batch Normalization allows us to use much higher learning rates and be less careful about initialization, and in some cases eliminates the need for Dropout. Applied to a state-of-the-art image classification model, Batch Normalization achieves the same accuracy with 14 times fewer training steps, and beats the original model by a significant margin. Using an ensemble of batch-normalized networks, we improve upon the best published result on ImageNet classification: reaching 4.82% top-5 test error, exceeding the accuracy of human raters.

30,843 citations

28 Oct 2017
TL;DR: An automatic differentiation module of PyTorch is described — a library designed to enable rapid research on machine learning models that focuses on differentiation of purely imperative programs, with a focus on extensibility and low overhead.
Abstract: In this article, we describe an automatic differentiation module of PyTorch — a library designed to enable rapid research on machine learning models. It builds upon a few projects, most notably Lua Torch, Chainer, and HIPS Autograd [4], and provides a high performance environment with easy access to automatic differentiation of models executed on different devices (CPU and GPU). To make prototyping easier, PyTorch does not follow the symbolic approach used in many other deep learning frameworks, but focuses on differentiation of purely imperative programs, with a focus on extensibility and low overhead. Note that this preprint is a draft of certain sections from an upcoming paper covering all PyTorch features.

13,268 citations

Posted Content
TL;DR: The TensorFlow interface and an implementation of that interface that is built at Google are described, which has been used for conducting research and for deploying machine learning systems into production across more than a dozen areas of computer science and other fields.
Abstract: TensorFlow is an interface for expressing machine learning algorithms, and an implementation for executing such algorithms. A computation expressed using TensorFlow can be executed with little or no change on a wide variety of heterogeneous systems, ranging from mobile devices such as phones and tablets up to large-scale distributed systems of hundreds of machines and thousands of computational devices such as GPU cards. The system is flexible and can be used to express a wide variety of algorithms, including training and inference algorithms for deep neural network models, and it has been used for conducting research and for deploying machine learning systems into production across more than a dozen areas of computer science and other fields, including speech recognition, computer vision, robotics, information retrieval, natural language processing, geographic information extraction, and computational drug discovery. This paper describes the TensorFlow interface and an implementation of that interface that we have built at Google. The TensorFlow API and a reference implementation were released as an open-source package under the Apache 2.0 license in November, 2015 and are available at www.tensorflow.org.

10,447 citations