scispace - formally typeset
Search or ask a question
Proceedings ArticleDOI

ArcFace: Additive Angular Margin Loss for Deep Face Recognition

15 Jun 2019-pp 4690-4699
TL;DR: This paper presents arguably the most extensive experimental evaluation against all recent state-of-the-art face recognition methods on ten face recognition benchmarks, and shows that ArcFace consistently outperforms the state of the art and can be easily implemented with negligible computational overhead.
Abstract: One of the main challenges in feature learning using Deep Convolutional Neural Networks (DCNNs) for large-scale face recognition is the design of appropriate loss functions that can enhance the discriminative power. Centre loss penalises the distance between deep features and their corresponding class centres in the Euclidean space to achieve intra-class compactness. SphereFace assumes that the linear transformation matrix in the last fully connected layer can be used as a representation of the class centres in the angular space and therefore penalises the angles between deep features and their corresponding weights in a multiplicative way. Recently, a popular line of research is to incorporate margins in well-established loss functions in order to maximise face class separability. In this paper, we propose an Additive Angular Margin Loss (ArcFace) to obtain highly discriminative features for face recognition. The proposed ArcFace has a clear geometric interpretation due to its exact correspondence to geodesic distance on a hypersphere. We present arguably the most extensive experimental evaluation against all recent state-of-the-art face recognition methods on ten face recognition benchmarks which includes a new large-scale image database with trillions of pairs and a large-scale video dataset. We show that ArcFace consistently outperforms the state of the art and can be easily implemented with negligible computational overhead. To facilitate future research, the code has been made available.

Content maybe subject to copyright    Report

Citations
More filters
Journal ArticleDOI
TL;DR: It was concluded that the proposed method is effective for evaluating the damage of thin metal films of flexible printed circuits at the micro scale, and under a broad range of fatigue conditions is required.

3 citations

Journal ArticleDOI
01 Jan 2023-Sensors
TL;DR: In this paper , a Generative Adversarial Network method is proposed for generating adversarial patches to carry out dodging and impersonation attacks on the targeted face recognition system, which yields a higher attack success rate than previous works.
Abstract: Deep learning technology has developed rapidly in recent years and has been successfully applied in many fields, including face recognition. Face recognition is used in many scenarios nowadays, including security control systems, access control management, health and safety management, employee attendance monitoring, automatic border control, and face scan payment. However, deep learning models are vulnerable to adversarial attacks conducted by perturbing probe images to generate adversarial examples, or using adversarial patches to generate well-designed perturbations in specific regions of the image. Most previous studies on adversarial attacks assume that the attacker hacks into the system and knows the architecture and parameters behind the deep learning model. In other words, the attacked model is a white box. However, this scenario is unrepresentative of most real-world adversarial attacks. Consequently, the present study assumes the face recognition system to be a black box, over which the attacker has no control. A Generative Adversarial Network method is proposed for generating adversarial patches to carry out dodging and impersonation attacks on the targeted face recognition system. The experimental results show that the proposed method yields a higher attack success rate than previous works.

3 citations

Proceedings ArticleDOI
01 Jun 2022
TL;DR: Zhang et al. as discussed by the authors proposed an Evaluation-oriented KD method (EKD) for deep face recognition to directly reduce the performance gap between the teacher and student models during training, where the critical relations in the student are constrained to approximate the corresponding ones in the teacher by a novel rank-based loss function, giving more flexibility to the student with low capacity.
Abstract: Knowledge distillation (KD) is a widely-used technique that utilizes large networks to improve the performance of compact models. Previous KD approaches usually aim to guide the student to mimic the teacher's behavior completely in the representation space. However, such one-to-one corresponding constraints may lead to inflexible knowledge transfer from the teacher to the student, especially those with low model capacities. Inspired by the ultimate goal of KD methods, we propose a novel Evaluation-oriented KD method (EKD) for deep face recognition to directly reduce the performance gap between the teacher and student models during training. Specifically, we adopt the commonly used evaluation metrics in face recognition, i.e., False Positive Rate (FPR) and True Positive Rate (TPR) as the performance indicator. According to the evaluation protocol, the critical pair relations that cause the TPR and FPR difference between the teacher and student models are selected. Then, the critical relations in the student are constrained to approximate the corresponding ones in the teacher by a novel rank-based loss function, giving more flexibility to the student with low capacity. Extensive experimental results on popular benchmarks demonstrate the superiority of our EKD over state-of-the-art competitors.

3 citations

Posted Content
TL;DR: In this article, a study utilizing the audiovisual recordings of classes at a secondary school over one and a half month's time, acquired continuous engagement labeling per student (N=15) in repeated sessions, and explored computer vision methods to classify engagement levels from faces in the classroom.
Abstract: Student engagement is a key construct for learning and teaching. While most of the literature explored the student engagement analysis on computer-based settings, this paper extends that focus to classroom instruction. To best examine student visual engagement in the classroom, we conducted a study utilizing the audiovisual recordings of classes at a secondary school over one and a half month's time, acquired continuous engagement labeling per student (N=15) in repeated sessions, and explored computer vision methods to classify engagement levels from faces in the classroom. We trained deep embeddings for attentional and emotional features, training Attention-Net for head pose estimation and Affect-Net for facial expression recognition. We additionally trained different engagement classifiers, consisting of Support Vector Machines, Random Forest, Multilayer Perceptron, and Long Short-Term Memory, for both features. The best performing engagement classifiers achieved AUCs of .620 and .720 in Grades 8 and 12, respectively. We further investigated fusion strategies and found score-level fusion either improves the engagement classifiers or is on par with the best performing modality. We also investigated the effect of personalization and found that using only 60-seconds of person-specific data selected by margin uncertainty of the base classifier yielded an average AUC improvement of .084. 4.Our main aim with this work is to provide the technical means to facilitate the manual data analysis of classroom videos in research on teaching quality and in the context of teacher training.

3 citations

Posted Content
TL;DR: Wang et al. as mentioned in this paper proposed a new feed-forward network for StyleGAN inversion, with significant improvement in terms of efficiency and quality, including a shallower backbone with multiple efficient heads across scales.
Abstract: This paper studies the problem of StyleGAN inversion, which plays an essential role in enabling the pretrained StyleGAN to be used for real facial image editing tasks. This problem has the high demand for quality and efficiency. Existing optimization-based methods can produce high quality results, but the optimization often takes a long time. On the contrary, forward-based methods are usually faster but the quality of their results is inferior. In this paper, we present a new feed-forward network for StyleGAN inversion, with significant improvement in terms of efficiency and quality. In our inversion network, we introduce: 1) a shallower backbone with multiple efficient heads across scales; 2) multi-layer identity loss and multi-layer face parsing loss to the loss function; and 3) multi-stage refinement. Combining these designs together forms a simple and efficient baseline method which exploits all benefits of optimization-based and forward-based methods. Quantitative and qualitative results show that our method performs better than existing forward-based methods and comparably to state-of-the-art optimization-based methods, while maintaining the high efficiency as well as forward-based methods. Moreover, a number of real image editing applications demonstrate the efficacy of our method. Our project page is ~\url{this https URL}.

3 citations

References
More filters
Proceedings ArticleDOI
27 Jun 2016
TL;DR: In this article, the authors proposed a residual learning framework to ease the training of networks that are substantially deeper than those used previously, which won the 1st place on the ILSVRC 2015 classification task.
Abstract: Deeper neural networks are more difficult to train. We present a residual learning framework to ease the training of networks that are substantially deeper than those used previously. We explicitly reformulate the layers as learning residual functions with reference to the layer inputs, instead of learning unreferenced functions. We provide comprehensive empirical evidence showing that these residual networks are easier to optimize, and can gain accuracy from considerably increased depth. On the ImageNet dataset we evaluate residual nets with a depth of up to 152 layers—8× deeper than VGG nets [40] but still having lower complexity. An ensemble of these residual nets achieves 3.57% error on the ImageNet test set. This result won the 1st place on the ILSVRC 2015 classification task. We also present analysis on CIFAR-10 with 100 and 1000 layers. The depth of representations is of central importance for many visual recognition tasks. Solely due to our extremely deep representations, we obtain a 28% relative improvement on the COCO object detection dataset. Deep residual nets are foundations of our submissions to ILSVRC & COCO 2015 competitions1, where we also won the 1st places on the tasks of ImageNet detection, ImageNet localization, COCO detection, and COCO segmentation.

123,388 citations

Journal Article
TL;DR: It is shown that dropout improves the performance of neural networks on supervised learning tasks in vision, speech recognition, document classification and computational biology, obtaining state-of-the-art results on many benchmark data sets.
Abstract: Deep neural nets with a large number of parameters are very powerful machine learning systems. However, overfitting is a serious problem in such networks. Large networks are also slow to use, making it difficult to deal with overfitting by combining the predictions of many different large neural nets at test time. Dropout is a technique for addressing this problem. The key idea is to randomly drop units (along with their connections) from the neural network during training. This prevents units from co-adapting too much. During training, dropout samples from an exponential number of different "thinned" networks. At test time, it is easy to approximate the effect of averaging the predictions of all these thinned networks by simply using a single unthinned network that has smaller weights. This significantly reduces overfitting and gives major improvements over other regularization methods. We show that dropout improves the performance of neural networks on supervised learning tasks in vision, speech recognition, document classification and computational biology, obtaining state-of-the-art results on many benchmark data sets.

33,597 citations

Proceedings Article
Sergey Ioffe1, Christian Szegedy1
06 Jul 2015
TL;DR: Applied to a state-of-the-art image classification model, Batch Normalization achieves the same accuracy with 14 times fewer training steps, and beats the original model by a significant margin.
Abstract: Training Deep Neural Networks is complicated by the fact that the distribution of each layer's inputs changes during training, as the parameters of the previous layers change. This slows down the training by requiring lower learning rates and careful parameter initialization, and makes it notoriously hard to train models with saturating nonlinearities. We refer to this phenomenon as internal covariate shift, and address the problem by normalizing layer inputs. Our method draws its strength from making normalization a part of the model architecture and performing the normalization for each training mini-batch. Batch Normalization allows us to use much higher learning rates and be less careful about initialization, and in some cases eliminates the need for Dropout. Applied to a state-of-the-art image classification model, Batch Normalization achieves the same accuracy with 14 times fewer training steps, and beats the original model by a significant margin. Using an ensemble of batch-normalized networks, we improve upon the best published result on ImageNet classification: reaching 4.82% top-5 test error, exceeding the accuracy of human raters.

30,843 citations

28 Oct 2017
TL;DR: An automatic differentiation module of PyTorch is described — a library designed to enable rapid research on machine learning models that focuses on differentiation of purely imperative programs, with a focus on extensibility and low overhead.
Abstract: In this article, we describe an automatic differentiation module of PyTorch — a library designed to enable rapid research on machine learning models. It builds upon a few projects, most notably Lua Torch, Chainer, and HIPS Autograd [4], and provides a high performance environment with easy access to automatic differentiation of models executed on different devices (CPU and GPU). To make prototyping easier, PyTorch does not follow the symbolic approach used in many other deep learning frameworks, but focuses on differentiation of purely imperative programs, with a focus on extensibility and low overhead. Note that this preprint is a draft of certain sections from an upcoming paper covering all PyTorch features.

13,268 citations

Posted Content
TL;DR: The TensorFlow interface and an implementation of that interface that is built at Google are described, which has been used for conducting research and for deploying machine learning systems into production across more than a dozen areas of computer science and other fields.
Abstract: TensorFlow is an interface for expressing machine learning algorithms, and an implementation for executing such algorithms. A computation expressed using TensorFlow can be executed with little or no change on a wide variety of heterogeneous systems, ranging from mobile devices such as phones and tablets up to large-scale distributed systems of hundreds of machines and thousands of computational devices such as GPU cards. The system is flexible and can be used to express a wide variety of algorithms, including training and inference algorithms for deep neural network models, and it has been used for conducting research and for deploying machine learning systems into production across more than a dozen areas of computer science and other fields, including speech recognition, computer vision, robotics, information retrieval, natural language processing, geographic information extraction, and computational drug discovery. This paper describes the TensorFlow interface and an implementation of that interface that we have built at Google. The TensorFlow API and a reference implementation were released as an open-source package under the Apache 2.0 license in November, 2015 and are available at www.tensorflow.org.

10,447 citations