scispace - formally typeset
Search or ask a question
Proceedings ArticleDOI

ArcFace: Additive Angular Margin Loss for Deep Face Recognition

15 Jun 2019-pp 4690-4699
TL;DR: This paper presents arguably the most extensive experimental evaluation against all recent state-of-the-art face recognition methods on ten face recognition benchmarks, and shows that ArcFace consistently outperforms the state of the art and can be easily implemented with negligible computational overhead.
Abstract: One of the main challenges in feature learning using Deep Convolutional Neural Networks (DCNNs) for large-scale face recognition is the design of appropriate loss functions that can enhance the discriminative power. Centre loss penalises the distance between deep features and their corresponding class centres in the Euclidean space to achieve intra-class compactness. SphereFace assumes that the linear transformation matrix in the last fully connected layer can be used as a representation of the class centres in the angular space and therefore penalises the angles between deep features and their corresponding weights in a multiplicative way. Recently, a popular line of research is to incorporate margins in well-established loss functions in order to maximise face class separability. In this paper, we propose an Additive Angular Margin Loss (ArcFace) to obtain highly discriminative features for face recognition. The proposed ArcFace has a clear geometric interpretation due to its exact correspondence to geodesic distance on a hypersphere. We present arguably the most extensive experimental evaluation against all recent state-of-the-art face recognition methods on ten face recognition benchmarks which includes a new large-scale image database with trillions of pairs and a large-scale video dataset. We show that ArcFace consistently outperforms the state of the art and can be easily implemented with negligible computational overhead. To facilitate future research, the code has been made available.

Content maybe subject to copyright    Report

Citations
More filters
Journal ArticleDOI
TL;DR: This paper proposed POMP, a prompt pre-training method for vision-language models, which enables the learned prompt to condense semantic information for a rich set of visual concepts with over twenty-thousand classes.
Abstract: This work proposes POMP, a prompt pre-training method for vision-language models. Being memory and computation efficient, POMP enables the learned prompt to condense semantic information for a rich set of visual concepts with over twenty-thousand classes. Once pre-trained, the prompt with a strong transferable ability can be directly plugged into a variety of visual recognition tasks including image classification, semantic segmentation, and object detection, to boost recognition performances in a zero-shot manner. Empirical evaluation shows that POMP achieves state-of-the-art performances on 21 downstream datasets, e.g., 67.0% average accuracy on 10 classification dataset (+3.1% compared to CoOp) and 84.4 hIoU on open-vocabulary Pascal VOC segmentation (+6.9 compared to ZSSeg).

3 citations

Proceedings ArticleDOI
14 Sep 2022
TL;DR: This work revisits two popular approaches to multilabel classification: transformer-based heads and labels relations information graph processing branches, and argues that with the proper training strategy graph-based methods can demonstrate just a small accuracy drop, while spending less computational resources on inference.
Abstract: Multi-label image classification allows predicting a set of labels from a given image. Unlike multiclass classification, where only one label per image is assigned, such a setup is applicable for a broader range of applications. In this work we revisit two popular approaches to multilabel classification: transformer-based heads and labels relations information graph processing branches. Although transformer-based heads are considered to achieve better results than graph-based branches, we argue that with the proper training strategy, graph-based methods can demonstrate just a small accuracy drop, while spending less computational resources on inference. In our training strategy, instead of Asymmetric Loss (ASL), which is the de-facto standard for multilabel classification, we introduce its metric learning modification. In each binary classification sub-problem it operates with $L_2$ normalized feature vectors coming from a backbone and enforces angles between the normalized representations of positive and negative samples to be as large as possible. This results in providing a better discrimination ability, than binary cross entropy loss does on unnormalized features. With the proposed loss and training strategy, we obtain SOTA results among single modality methods on widespread multilabel classification benchmarks such as MS-COCO, PASCAL-VOC, NUS-Wide and Visual Genome 500. Source code of our method is available as a part of the OpenVINO Training Extensions https://github.com/openvinotoolkit/deep-object-reid/tree/multilabel

3 citations

DOI
TL;DR: This work reduces the model parameters by reducing the number of layers in MobileFaceNet, and uses the h-ReLU6 activation function to replace PReLU in the original model, and introduces the effective channel attention module efficient channel attention to obtain the importance of each feature channel by learning.
Abstract: The face recognition method based on deep convolutional neural network is difficult to deploy in the embedding devices. In this work, we optimize the MobileFaceNet face recognition network MobileFaceNet so as to deploy it in embedding environment. Firstly, we reduce the model parameters by reducing the number of layers in MobileFaceNet. Then, the h-ReLU6 activation function is used to replace PReLU in the original model. Finally, the effective channel attention module efficient channel attention is introduced to obtain the importance of each feature channel by learning. After the optimization, the MobileFaceNet parameters are compressed to 3.4 MB, which is smaller than the original model (4.9 MB), and the mAPs reach 98.52%, 97.54% and 91.33% on the test sets of LFW, VGGFace2 and the self-built database, respectively, and the recognition time is about 85 ms/photo. It shows that the proposed method achieves a good balance between the model complexity and model performance.

3 citations

Journal ArticleDOI
TL;DR: Zhang et al. as mentioned in this paper proposed to learn with additional classes, where the additional classes can be either real classes from other datasets or synthesized from known classes to improve the generalization and reliability performance.
Abstract: Traditional pattern recognition models usually assume a fixed and identical number of classes during both training and inference stages. In this paper, we study an interesting but ignored question: can increasing the number of classes during training improve the generalization and reliability performance? For a $k$k-class problem, instead of training with only these $k$k classes, we propose to learn with $k+m$k+m classes, where the additional $m$m classes can be either real classes from other datasets or synthesized from known classes. Specifically, we propose two strategies for constructing new classes from known classes. By making the model see more classes during training, we can obtain several advantages. First, the added $m$m classes serve as a regularization which is helpful to improve the generalization accuracy on the original $k$k classes. Second, this will alleviate the overconfident phenomenon and produce more reliable confidence estimation for different tasks like misclassification detection, confidence calibration, and out-of-distribution detection. Lastly, the additional classes can also improve the learned feature representation, which is beneficial for new classes generalization in few-shot learning and class-incremental learning. Compared with the widely proved concept of data augmentation (dataAug), our method is driven from another dimension of augmentation based on additional classes (classAug). Comprehensive experiments demonstrated the superiority of our classAug under various open-environment metrics on benchmark datasets.

3 citations

Journal ArticleDOI
24 May 2022
TL;DR: Experimental results show that ASL outperforms state-of-the-art methods by a clear margin, suggesting that solving the symmetric-asymmetric conflict is critical for ICD.
Abstract: Image copy detection (ICD) aims to determine whether a query image is an edited copy of any image from a reference set. Currently, there are very limited public benchmarks for ICD, while all overlook a critical challenge in real-world applications, i.e., the distraction from hard negative queries. Specifically, some queries are not edited copies but are inherently similar to some reference images. These hard negative queries are easily false recognized as edited copies, significantly compromising the ICD accuracy. This observation motivates us to build the first ICD benchmark featuring this characteristic. Based on existing ICD datasets, this paper constructs a new dataset by additionally adding 100,000 and 24, 252 hard negative pairs into the training and test set, respectively. Moreover, this paper further reveals a unique difficulty for solving the hard negative problem in ICD, i.e., there is a fundamental conflict between current metric learning and ICD. This conflict is: the metric learning adopts symmetric distance while the edited copy is an asymmetric (unidirectional) process, e.g., a partial crop is close to its holistic reference image and is an edited copy, while the latter cannot be the edited copy of the former (in spite the distance is equally small). This insight results in an Asymmetrical-Similarity Learning (ASL) method, which allows the similarity in two directions (the query ↔ the reference image) to be different from each other. Experimental results show that ASL outperforms state-of-the-art methods by a clear margin, confirming that solving the symmetric-asymmetric conflict is critical for ICD. The NDEC dataset and code are available at https://github.com/WangWenhao0716/ASL.

3 citations

References
More filters
Proceedings ArticleDOI
27 Jun 2016
TL;DR: In this article, the authors proposed a residual learning framework to ease the training of networks that are substantially deeper than those used previously, which won the 1st place on the ILSVRC 2015 classification task.
Abstract: Deeper neural networks are more difficult to train. We present a residual learning framework to ease the training of networks that are substantially deeper than those used previously. We explicitly reformulate the layers as learning residual functions with reference to the layer inputs, instead of learning unreferenced functions. We provide comprehensive empirical evidence showing that these residual networks are easier to optimize, and can gain accuracy from considerably increased depth. On the ImageNet dataset we evaluate residual nets with a depth of up to 152 layers—8× deeper than VGG nets [40] but still having lower complexity. An ensemble of these residual nets achieves 3.57% error on the ImageNet test set. This result won the 1st place on the ILSVRC 2015 classification task. We also present analysis on CIFAR-10 with 100 and 1000 layers. The depth of representations is of central importance for many visual recognition tasks. Solely due to our extremely deep representations, we obtain a 28% relative improvement on the COCO object detection dataset. Deep residual nets are foundations of our submissions to ILSVRC & COCO 2015 competitions1, where we also won the 1st places on the tasks of ImageNet detection, ImageNet localization, COCO detection, and COCO segmentation.

123,388 citations

Journal Article
TL;DR: It is shown that dropout improves the performance of neural networks on supervised learning tasks in vision, speech recognition, document classification and computational biology, obtaining state-of-the-art results on many benchmark data sets.
Abstract: Deep neural nets with a large number of parameters are very powerful machine learning systems. However, overfitting is a serious problem in such networks. Large networks are also slow to use, making it difficult to deal with overfitting by combining the predictions of many different large neural nets at test time. Dropout is a technique for addressing this problem. The key idea is to randomly drop units (along with their connections) from the neural network during training. This prevents units from co-adapting too much. During training, dropout samples from an exponential number of different "thinned" networks. At test time, it is easy to approximate the effect of averaging the predictions of all these thinned networks by simply using a single unthinned network that has smaller weights. This significantly reduces overfitting and gives major improvements over other regularization methods. We show that dropout improves the performance of neural networks on supervised learning tasks in vision, speech recognition, document classification and computational biology, obtaining state-of-the-art results on many benchmark data sets.

33,597 citations

Proceedings Article
Sergey Ioffe1, Christian Szegedy1
06 Jul 2015
TL;DR: Applied to a state-of-the-art image classification model, Batch Normalization achieves the same accuracy with 14 times fewer training steps, and beats the original model by a significant margin.
Abstract: Training Deep Neural Networks is complicated by the fact that the distribution of each layer's inputs changes during training, as the parameters of the previous layers change. This slows down the training by requiring lower learning rates and careful parameter initialization, and makes it notoriously hard to train models with saturating nonlinearities. We refer to this phenomenon as internal covariate shift, and address the problem by normalizing layer inputs. Our method draws its strength from making normalization a part of the model architecture and performing the normalization for each training mini-batch. Batch Normalization allows us to use much higher learning rates and be less careful about initialization, and in some cases eliminates the need for Dropout. Applied to a state-of-the-art image classification model, Batch Normalization achieves the same accuracy with 14 times fewer training steps, and beats the original model by a significant margin. Using an ensemble of batch-normalized networks, we improve upon the best published result on ImageNet classification: reaching 4.82% top-5 test error, exceeding the accuracy of human raters.

30,843 citations

28 Oct 2017
TL;DR: An automatic differentiation module of PyTorch is described — a library designed to enable rapid research on machine learning models that focuses on differentiation of purely imperative programs, with a focus on extensibility and low overhead.
Abstract: In this article, we describe an automatic differentiation module of PyTorch — a library designed to enable rapid research on machine learning models. It builds upon a few projects, most notably Lua Torch, Chainer, and HIPS Autograd [4], and provides a high performance environment with easy access to automatic differentiation of models executed on different devices (CPU and GPU). To make prototyping easier, PyTorch does not follow the symbolic approach used in many other deep learning frameworks, but focuses on differentiation of purely imperative programs, with a focus on extensibility and low overhead. Note that this preprint is a draft of certain sections from an upcoming paper covering all PyTorch features.

13,268 citations

Posted Content
TL;DR: The TensorFlow interface and an implementation of that interface that is built at Google are described, which has been used for conducting research and for deploying machine learning systems into production across more than a dozen areas of computer science and other fields.
Abstract: TensorFlow is an interface for expressing machine learning algorithms, and an implementation for executing such algorithms. A computation expressed using TensorFlow can be executed with little or no change on a wide variety of heterogeneous systems, ranging from mobile devices such as phones and tablets up to large-scale distributed systems of hundreds of machines and thousands of computational devices such as GPU cards. The system is flexible and can be used to express a wide variety of algorithms, including training and inference algorithms for deep neural network models, and it has been used for conducting research and for deploying machine learning systems into production across more than a dozen areas of computer science and other fields, including speech recognition, computer vision, robotics, information retrieval, natural language processing, geographic information extraction, and computational drug discovery. This paper describes the TensorFlow interface and an implementation of that interface that we have built at Google. The TensorFlow API and a reference implementation were released as an open-source package under the Apache 2.0 license in November, 2015 and are available at www.tensorflow.org.

10,447 citations