scispace - formally typeset
Search or ask a question
Proceedings ArticleDOI

ArcFace: Additive Angular Margin Loss for Deep Face Recognition

15 Jun 2019-pp 4690-4699
TL;DR: This paper presents arguably the most extensive experimental evaluation against all recent state-of-the-art face recognition methods on ten face recognition benchmarks, and shows that ArcFace consistently outperforms the state of the art and can be easily implemented with negligible computational overhead.
Abstract: One of the main challenges in feature learning using Deep Convolutional Neural Networks (DCNNs) for large-scale face recognition is the design of appropriate loss functions that can enhance the discriminative power. Centre loss penalises the distance between deep features and their corresponding class centres in the Euclidean space to achieve intra-class compactness. SphereFace assumes that the linear transformation matrix in the last fully connected layer can be used as a representation of the class centres in the angular space and therefore penalises the angles between deep features and their corresponding weights in a multiplicative way. Recently, a popular line of research is to incorporate margins in well-established loss functions in order to maximise face class separability. In this paper, we propose an Additive Angular Margin Loss (ArcFace) to obtain highly discriminative features for face recognition. The proposed ArcFace has a clear geometric interpretation due to its exact correspondence to geodesic distance on a hypersphere. We present arguably the most extensive experimental evaluation against all recent state-of-the-art face recognition methods on ten face recognition benchmarks which includes a new large-scale image database with trillions of pairs and a large-scale video dataset. We show that ArcFace consistently outperforms the state of the art and can be easily implemented with negligible computational overhead. To facilitate future research, the code has been made available.

Content maybe subject to copyright    Report

Citations
More filters
Posted Content
TL;DR: Flaws in the experimental methodology of numerous metric learning papers are found, and it is shown that the actual improvements over time have been marginal at best.
Abstract: Deep metric learning papers from the past four years have consistently claimed great advances in accuracy, often more than doubling the performance of decade-old methods. In this paper, we take a closer look at the field to see if this is actually true. We find flaws in the experimental methodology of numerous metric learning papers, and show that the actual improvements over time have been marginal at best.

244 citations


Cites background from "ArcFace: Additive Angular Margin Lo..."

  • ...d the weight matrix. A number of face verication losses have modied the cross entropy loss with angular margins in the softmax expression. Specically, SphereFace [31], CosFace [57,59], and ArcFace [11] apply multiplicative-angular, additive-cosine, and additive-angular margins, respectively. (It is interesting to note that metric learning papers have consistently left out face verication losses fr...

    [...]

  • ...ProxyNCA [35] 2017 Classication Margin [65] 2017 Embedding Margin / class [65] 2017 Embedding Normalized Softmax (N. Softmax) [58,31,72] 2017 Classication CosFace [57,59] 2018 Classication ArcFace [11] 2019 Classication FastAP [3] 2019 Embedding Signal to Noise Ratio Contrastive (SNR) [70] 2019 Embedding MultiSimilarity (MS) [62] 2019 Embedding MS+Miner [62] 2019 Embedding SoftTriple [41] 2019 Cla...

    [...]

Posted Content
TL;DR: A novel soft softmax-triplet loss is proposed to support learning with soft pseudo triplet labels for achieving the optimal domain adaptation performance in person re-identification models.
Abstract: Person re-identification (re-ID) aims at identifying the same persons' images across different cameras. However, domain diversities between different datasets pose an evident challenge for adapting the re-ID model trained on one dataset to another one. State-of-the-art unsupervised domain adaptation methods for person re-ID transferred the learned knowledge from the source domain by optimizing with pseudo labels created by clustering algorithms on the target domain. Although they achieved state-of-the-art performances, the inevitable label noise caused by the clustering procedure was ignored. Such noisy pseudo labels substantially hinders the model's capability on further improving feature representations on the target domain. In order to mitigate the effects of noisy pseudo labels, we propose to softly refine the pseudo labels in the target domain by proposing an unsupervised framework, Mutual Mean-Teaching (MMT), to learn better features from the target domain via off-line refined hard pseudo labels and on-line refined soft pseudo labels in an alternative training manner. In addition, the common practice is to adopt both the classification loss and the triplet loss jointly for achieving optimal performances in person re-ID models. However, conventional triplet loss cannot work with softly refined labels. To solve this problem, a novel soft softmax-triplet loss is proposed to support learning with soft pseudo triplet labels for achieving the optimal domain adaptation performance. The proposed MMT framework achieves considerable improvements of 14.4%, 18.2%, 13.1% and 16.4% mAP on Market-to-Duke, Duke-to-Market, Market-to-MSMT and Duke-to-MSMT unsupervised domain adaptation tasks. Code is available at this https URL.

233 citations


Cites methods from "ArcFace: Additive Angular Margin Lo..."

  • ..., 2019) further extended this method on the face recognition task with a re-weighting function for Arc-Softmax loss (Deng et al., 2019)....

    [...]

  • ...…(Han et al., 2018) trained two collaborative networks and conducted noisy label detection by selecting on-line clean data for each other, Co-mining (Wang et al., 2019) further extended this method on the face recognition task with a re-weighting function for Arc-Softmax loss (Deng et al., 2019)....

    [...]

Proceedings ArticleDOI
14 Jun 2020
TL;DR: Wang et al. as mentioned in this paper proposed a self-attention mechanism over FER dataset to weight each sample in training with a ranking regularization, and a careful relabeling mechanism to modify the labels of these samples in the lowest ranked group.
Abstract: Annotating a qualitative large-scale facial expression dataset is extremely difficult due to the uncertainties caused by ambiguous facial expressions, low-quality facial images, and the subjectiveness of annotators. These uncertainties suspend the progress of large-scale Facial Expression Recognition (FER) in data-driven deep learning era. To address this problelm, this paper proposes to suppress the uncertainties by a simple yet efficient Self-Cure Network (SCN). Specifically, SCN suppresses the uncertainty from two different aspects: 1) a self-attention mechanism over FER dataset to weight each sample in training with a ranking regularization, and 2) a careful relabeling mechanism to modify the labels of these samples in the lowest-ranked group. Experiments on synthetic FER datasets and our collected WebEmotion dataset validate the effectiveness of our method. Results on public benchmarks demonstrate that our SCN outperforms current state-of-the-art methods with \textbf{88.14}\% on RAF-DB, \textbf{60.23}\% on AffectNet, and \textbf{89.35}\% on FERPlus.

220 citations

Proceedings ArticleDOI
11 Sep 2019
TL;DR: The SoftTriple loss is proposed to extend the SoftMax loss with multiple centers for each class, equivalent to a smoothed triplet loss where each class has a single center.
Abstract: Distance metric learning (DML) is to learn the embeddings where examples from the same class are closer than examples from different classes. It can be cast as an optimization problem with triplet constraints. Due to the vast number of triplet constraints, a sampling strategy is essential for DML. With the tremendous success of deep learning in classifications, it has been applied for DML. When learning embeddings with deep neural networks (DNNs), only a mini-batch of data is available at each iteration. The set of triplet constraints has to be sampled within the mini-batch. Since a mini-batch cannot capture the neighbors in the original set well, it makes the learned embeddings sub-optimal. On the contrary, optimizing SoftMax loss, which is a classification loss, with DNN shows a superior performance in certain DML tasks. It inspires us to investigate the formulation of SoftMax. Our analysis shows that SoftMax loss is equivalent to a smoothed triplet loss where each class has a single center. In real-world data, one class can contain several local clusters rather than a single one, e.g., birds of different poses. Therefore, we propose the SoftTriple loss to extend the SoftMax loss with multiple centers for each class. Compared with conventional deep metric learning algorithms, optimizing SoftTriple loss can learn the embeddings without the sampling phase by mildly increasing the size of the last fully connected layer. Experiments on the benchmark fine-grained data sets demonstrate the effectiveness of the proposed loss function.

213 citations


Cites background from "ArcFace: Additive Angular Margin Lo..."

  • ...Recently, researches have shown that embeddings obtained directly from optimizing SoftMax loss, which is proposed for classification, perform well on the simple distance based tasks [22, 30] and face recognition [2, 9, 10, 27, 28]....

    [...]

Proceedings ArticleDOI
18 Aug 2021
TL;DR: TediGAN as discussed by the authors uses StyleGAN inversion module, visual-linguistic similarity learning, and instance-level optimization to produce diverse and high-quality images with an unprecedented resolution at 10242.
Abstract: In this work, we propose TediGAN, a novel framework for multi-modal image generation and manipulation with textual descriptions. The proposed method consists of three components: StyleGAN inversion module, visual-linguistic similarity learning, and instance-level optimization. The inversion module maps real images to the latent space of a well-trained StyleGAN. The visual-linguistic similarity learns the text-image matching by mapping the image and text into a common embedding space. The instancelevel optimization is for identity preservation in manipulation. Our model can produce diverse and high-quality images with an unprecedented resolution at 10242. Using a control mechanism based on style-mixing, our TediGAN inherently supports image synthesis with multi-modal inputs, such as sketches or semantic labels, with or without instance guidance. To facilitate text-guided multi-modal synthesis, we propose the Multi-Modal CelebA-HQ, a large-scale dataset consisting of real face images and corresponding semantic segmentation map, sketch, and textual descriptions. Extensive experiments on the introduced dataset demonstrate the superior performance of our proposed method. Code and data are available at https://github.com/weihaox/TediGAN.

212 citations

References
More filters
Proceedings ArticleDOI
27 Jun 2016
TL;DR: In this article, the authors proposed a residual learning framework to ease the training of networks that are substantially deeper than those used previously, which won the 1st place on the ILSVRC 2015 classification task.
Abstract: Deeper neural networks are more difficult to train. We present a residual learning framework to ease the training of networks that are substantially deeper than those used previously. We explicitly reformulate the layers as learning residual functions with reference to the layer inputs, instead of learning unreferenced functions. We provide comprehensive empirical evidence showing that these residual networks are easier to optimize, and can gain accuracy from considerably increased depth. On the ImageNet dataset we evaluate residual nets with a depth of up to 152 layers—8× deeper than VGG nets [40] but still having lower complexity. An ensemble of these residual nets achieves 3.57% error on the ImageNet test set. This result won the 1st place on the ILSVRC 2015 classification task. We also present analysis on CIFAR-10 with 100 and 1000 layers. The depth of representations is of central importance for many visual recognition tasks. Solely due to our extremely deep representations, we obtain a 28% relative improvement on the COCO object detection dataset. Deep residual nets are foundations of our submissions to ILSVRC & COCO 2015 competitions1, where we also won the 1st places on the tasks of ImageNet detection, ImageNet localization, COCO detection, and COCO segmentation.

123,388 citations

Journal Article
TL;DR: It is shown that dropout improves the performance of neural networks on supervised learning tasks in vision, speech recognition, document classification and computational biology, obtaining state-of-the-art results on many benchmark data sets.
Abstract: Deep neural nets with a large number of parameters are very powerful machine learning systems. However, overfitting is a serious problem in such networks. Large networks are also slow to use, making it difficult to deal with overfitting by combining the predictions of many different large neural nets at test time. Dropout is a technique for addressing this problem. The key idea is to randomly drop units (along with their connections) from the neural network during training. This prevents units from co-adapting too much. During training, dropout samples from an exponential number of different "thinned" networks. At test time, it is easy to approximate the effect of averaging the predictions of all these thinned networks by simply using a single unthinned network that has smaller weights. This significantly reduces overfitting and gives major improvements over other regularization methods. We show that dropout improves the performance of neural networks on supervised learning tasks in vision, speech recognition, document classification and computational biology, obtaining state-of-the-art results on many benchmark data sets.

33,597 citations

Proceedings Article
Sergey Ioffe1, Christian Szegedy1
06 Jul 2015
TL;DR: Applied to a state-of-the-art image classification model, Batch Normalization achieves the same accuracy with 14 times fewer training steps, and beats the original model by a significant margin.
Abstract: Training Deep Neural Networks is complicated by the fact that the distribution of each layer's inputs changes during training, as the parameters of the previous layers change. This slows down the training by requiring lower learning rates and careful parameter initialization, and makes it notoriously hard to train models with saturating nonlinearities. We refer to this phenomenon as internal covariate shift, and address the problem by normalizing layer inputs. Our method draws its strength from making normalization a part of the model architecture and performing the normalization for each training mini-batch. Batch Normalization allows us to use much higher learning rates and be less careful about initialization, and in some cases eliminates the need for Dropout. Applied to a state-of-the-art image classification model, Batch Normalization achieves the same accuracy with 14 times fewer training steps, and beats the original model by a significant margin. Using an ensemble of batch-normalized networks, we improve upon the best published result on ImageNet classification: reaching 4.82% top-5 test error, exceeding the accuracy of human raters.

30,843 citations

28 Oct 2017
TL;DR: An automatic differentiation module of PyTorch is described — a library designed to enable rapid research on machine learning models that focuses on differentiation of purely imperative programs, with a focus on extensibility and low overhead.
Abstract: In this article, we describe an automatic differentiation module of PyTorch — a library designed to enable rapid research on machine learning models. It builds upon a few projects, most notably Lua Torch, Chainer, and HIPS Autograd [4], and provides a high performance environment with easy access to automatic differentiation of models executed on different devices (CPU and GPU). To make prototyping easier, PyTorch does not follow the symbolic approach used in many other deep learning frameworks, but focuses on differentiation of purely imperative programs, with a focus on extensibility and low overhead. Note that this preprint is a draft of certain sections from an upcoming paper covering all PyTorch features.

13,268 citations

Posted Content
TL;DR: The TensorFlow interface and an implementation of that interface that is built at Google are described, which has been used for conducting research and for deploying machine learning systems into production across more than a dozen areas of computer science and other fields.
Abstract: TensorFlow is an interface for expressing machine learning algorithms, and an implementation for executing such algorithms. A computation expressed using TensorFlow can be executed with little or no change on a wide variety of heterogeneous systems, ranging from mobile devices such as phones and tablets up to large-scale distributed systems of hundreds of machines and thousands of computational devices such as GPU cards. The system is flexible and can be used to express a wide variety of algorithms, including training and inference algorithms for deep neural network models, and it has been used for conducting research and for deploying machine learning systems into production across more than a dozen areas of computer science and other fields, including speech recognition, computer vision, robotics, information retrieval, natural language processing, geographic information extraction, and computational drug discovery. This paper describes the TensorFlow interface and an implementation of that interface that we have built at Google. The TensorFlow API and a reference implementation were released as an open-source package under the Apache 2.0 license in November, 2015 and are available at www.tensorflow.org.

10,447 citations