scispace - formally typeset
Search or ask a question
Proceedings ArticleDOI

ArcFace: Additive Angular Margin Loss for Deep Face Recognition

15 Jun 2019-pp 4690-4699
TL;DR: This paper presents arguably the most extensive experimental evaluation against all recent state-of-the-art face recognition methods on ten face recognition benchmarks, and shows that ArcFace consistently outperforms the state of the art and can be easily implemented with negligible computational overhead.
Abstract: One of the main challenges in feature learning using Deep Convolutional Neural Networks (DCNNs) for large-scale face recognition is the design of appropriate loss functions that can enhance the discriminative power. Centre loss penalises the distance between deep features and their corresponding class centres in the Euclidean space to achieve intra-class compactness. SphereFace assumes that the linear transformation matrix in the last fully connected layer can be used as a representation of the class centres in the angular space and therefore penalises the angles between deep features and their corresponding weights in a multiplicative way. Recently, a popular line of research is to incorporate margins in well-established loss functions in order to maximise face class separability. In this paper, we propose an Additive Angular Margin Loss (ArcFace) to obtain highly discriminative features for face recognition. The proposed ArcFace has a clear geometric interpretation due to its exact correspondence to geodesic distance on a hypersphere. We present arguably the most extensive experimental evaluation against all recent state-of-the-art face recognition methods on ten face recognition benchmarks which includes a new large-scale image database with trillions of pairs and a large-scale video dataset. We show that ArcFace consistently outperforms the state of the art and can be easily implemented with negligible computational overhead. To facilitate future research, the code has been made available.

Content maybe subject to copyright    Report

Citations
More filters
Journal ArticleDOI
TL;DR: In this paper, an automatic discriminative method based on convolutional neural networks (CNNs) for classifying 12 different cultivars of common beans that belong to three various species was proposed.

22 citations

Proceedings ArticleDOI
25 Jul 2022
TL;DR: This work proposes a large-scale, high-quality, and diverse video dataset with rich facial attribute annotations, named the High-Quality Celebrity Video Dataset (CelebV-HQ), and conducts a comprehensive analysis in terms of age, ethnicity, brightness stability, motion smoothness, head pose diversity, and data quality.
Abstract: Large-scale datasets have played indispensable roles in the recent success of face generation/editing and significantly facilitated the advances of emerging research fields. However, the academic community still lacks a video dataset with diverse facial attribute annotations, which is crucial for the research on face-related videos. In this work, we propose a large-scale, high-quality, and diverse video dataset with rich facial attribute annotations, named the High-Quality Celebrity Video Dataset (CelebV-HQ). CelebV-HQ contains 35,666 video clips with the resolution of 512x512 at least, involving 15,653 identities. All clips are labeled manually with 83 facial attributes, covering appearance, action, and emotion. We conduct a comprehensive analysis in terms of age, ethnicity, brightness stability, motion smoothness, head pose diversity, and data quality to demonstrate the diversity and temporal coherence of CelebV-HQ. Besides, its versatility and potential are validated on two representative tasks, i.e., unconditional video generation and video facial attribute editing. Furthermore, we envision the future potential of CelebV-HQ, as well as the new opportunities and challenges it would bring to related research directions. Data, code, and models are publicly available. Project page: https://celebv-hq.github.io.

22 citations

Journal ArticleDOI
TL;DR: A Receptive Field Enhanced Multi-Task Cascaded CNN that takes advantage of the Inception-V2 block and receptive field block to enhance the feature discriminability and robustness for small targets.
Abstract: With the continuous development of deep learning, face detection methods have made the greatest progress. For real-time detection, cascade CNN based on the lightweight model is still the dominant structure that predicts face in a coarse-to-fine manner with strong generalization ability. Compared to other methods, it is not required for a fixed size of the input. However, MTCNN still has poor performance in detecting tiny targets. To improve model generalization ability, we propose a Receptive Field Enhanced Multi-Task Cascaded CNN. This network takes advantage of the Inception-V2 block and receptive field block to enhance the feature discriminability and robustness for small targets. The experimental results show that the performance of our network is improved by 1.08% on the AFW, 2.84% on the PASCAL FACE, 1.31% on the FDDB, and 2.3%, 2.1%, and 6.6% on the three sub-datasets of the WIDER FACE benchmark in comparison with MTCNN respectively. Furthermore, our structure uses 16% fewer parameters.

22 citations


Cites background from "ArcFace: Additive Angular Margin Lo..."

  • ...INTRODUCTION Face detection is the basis in the field of computer vision and pattern recognition, as well as a fundamental step of facerelated research, such as face recognition [1], verification [2], and tracking [3]....

    [...]

Journal ArticleDOI
TL;DR: A comprehensive overview of breakthroughs and recent developments in gait recognition with deep learning can be found in this article , where the authors present broad topics including datasets, test protocols, state-of-the-art solutions, challenges, and future research directions.
Abstract: Gait recognition is an appealing biometric modality which aims to identify individuals based on the way they walk. Deep learning has reshaped the research landscape in this area since 2015 through the ability to automatically learn discriminative representations. Gait recognition methods based on deep learning now dominate the state-of-the-art in the field and have fostered real-world applications. In this paper, we present a comprehensive overview of breakthroughs and recent developments in gait recognition with deep learning, and cover broad topics including datasets, test protocols, state-of-the-art solutions, challenges, and future research directions. We first review the commonly used gait datasets along with the principles designed for evaluating them. We then propose a novel taxonomy made up of four separate dimensions namely body representation, temporal representation, feature representation, and neural architecture, to help characterize and organize the research landscape and literature in this area. Following our proposed taxonomy, a comprehensive survey of gait recognition methods using deep learning is presented with discussions on their performances, characteristics, advantages, and limitations. We conclude this survey with a discussion on current challenges and mention a number of promising directions for future research in gait recognition.

22 citations

Proceedings ArticleDOI
28 Mar 2022
TL;DR: A sparsely updating variant of the FC layer, named Partial FC (PFC), where all class centers are still maintained throughout the whole training process, but only a subset is selected and updated in each iteration, resulting in a dramatically reduced computing requirement and frequency of passive update on tail class centers.
Abstract: Learning discriminative deep feature embeddings by using million-scale in-the-wild datasets and margin-based softmax loss is the current state-of-the-art approach for face recognition. However, the memory and computing cost of the Fully Connected (FC) layer linearly scales up to the number of identities in the training set. Besides, the largescale training data inevitably suffers from inter-class conflict and long-tailed distribution. In this paper, we propose a sparsely updating variant of the FC layer, named Partial FC (PFC). In each iteration, positive class centers and a random subset of negative class centers are selected to compute the margin-based softmax loss. All class centers are still maintained throughout the whole training process, but only a subset is selected and updated in each iteration. Therefore, the computing requirement, the probability of inter-class conflict, and the frequency of passive update on tail class centers, are dramatically reduced. Extensive experiments across different training data and backbones (e.g. CNN and ViT) confirm the effectiveness, robustness and efficiency of the proposed PFC. The source code is available at https://github.com/deepinsight/insightface/tree/master/recognition.

22 citations

References
More filters
Proceedings ArticleDOI
27 Jun 2016
TL;DR: In this article, the authors proposed a residual learning framework to ease the training of networks that are substantially deeper than those used previously, which won the 1st place on the ILSVRC 2015 classification task.
Abstract: Deeper neural networks are more difficult to train. We present a residual learning framework to ease the training of networks that are substantially deeper than those used previously. We explicitly reformulate the layers as learning residual functions with reference to the layer inputs, instead of learning unreferenced functions. We provide comprehensive empirical evidence showing that these residual networks are easier to optimize, and can gain accuracy from considerably increased depth. On the ImageNet dataset we evaluate residual nets with a depth of up to 152 layers—8× deeper than VGG nets [40] but still having lower complexity. An ensemble of these residual nets achieves 3.57% error on the ImageNet test set. This result won the 1st place on the ILSVRC 2015 classification task. We also present analysis on CIFAR-10 with 100 and 1000 layers. The depth of representations is of central importance for many visual recognition tasks. Solely due to our extremely deep representations, we obtain a 28% relative improvement on the COCO object detection dataset. Deep residual nets are foundations of our submissions to ILSVRC & COCO 2015 competitions1, where we also won the 1st places on the tasks of ImageNet detection, ImageNet localization, COCO detection, and COCO segmentation.

123,388 citations

Journal Article
TL;DR: It is shown that dropout improves the performance of neural networks on supervised learning tasks in vision, speech recognition, document classification and computational biology, obtaining state-of-the-art results on many benchmark data sets.
Abstract: Deep neural nets with a large number of parameters are very powerful machine learning systems. However, overfitting is a serious problem in such networks. Large networks are also slow to use, making it difficult to deal with overfitting by combining the predictions of many different large neural nets at test time. Dropout is a technique for addressing this problem. The key idea is to randomly drop units (along with their connections) from the neural network during training. This prevents units from co-adapting too much. During training, dropout samples from an exponential number of different "thinned" networks. At test time, it is easy to approximate the effect of averaging the predictions of all these thinned networks by simply using a single unthinned network that has smaller weights. This significantly reduces overfitting and gives major improvements over other regularization methods. We show that dropout improves the performance of neural networks on supervised learning tasks in vision, speech recognition, document classification and computational biology, obtaining state-of-the-art results on many benchmark data sets.

33,597 citations

Proceedings Article
Sergey Ioffe1, Christian Szegedy1
06 Jul 2015
TL;DR: Applied to a state-of-the-art image classification model, Batch Normalization achieves the same accuracy with 14 times fewer training steps, and beats the original model by a significant margin.
Abstract: Training Deep Neural Networks is complicated by the fact that the distribution of each layer's inputs changes during training, as the parameters of the previous layers change. This slows down the training by requiring lower learning rates and careful parameter initialization, and makes it notoriously hard to train models with saturating nonlinearities. We refer to this phenomenon as internal covariate shift, and address the problem by normalizing layer inputs. Our method draws its strength from making normalization a part of the model architecture and performing the normalization for each training mini-batch. Batch Normalization allows us to use much higher learning rates and be less careful about initialization, and in some cases eliminates the need for Dropout. Applied to a state-of-the-art image classification model, Batch Normalization achieves the same accuracy with 14 times fewer training steps, and beats the original model by a significant margin. Using an ensemble of batch-normalized networks, we improve upon the best published result on ImageNet classification: reaching 4.82% top-5 test error, exceeding the accuracy of human raters.

30,843 citations

28 Oct 2017
TL;DR: An automatic differentiation module of PyTorch is described — a library designed to enable rapid research on machine learning models that focuses on differentiation of purely imperative programs, with a focus on extensibility and low overhead.
Abstract: In this article, we describe an automatic differentiation module of PyTorch — a library designed to enable rapid research on machine learning models. It builds upon a few projects, most notably Lua Torch, Chainer, and HIPS Autograd [4], and provides a high performance environment with easy access to automatic differentiation of models executed on different devices (CPU and GPU). To make prototyping easier, PyTorch does not follow the symbolic approach used in many other deep learning frameworks, but focuses on differentiation of purely imperative programs, with a focus on extensibility and low overhead. Note that this preprint is a draft of certain sections from an upcoming paper covering all PyTorch features.

13,268 citations

Posted Content
TL;DR: The TensorFlow interface and an implementation of that interface that is built at Google are described, which has been used for conducting research and for deploying machine learning systems into production across more than a dozen areas of computer science and other fields.
Abstract: TensorFlow is an interface for expressing machine learning algorithms, and an implementation for executing such algorithms. A computation expressed using TensorFlow can be executed with little or no change on a wide variety of heterogeneous systems, ranging from mobile devices such as phones and tablets up to large-scale distributed systems of hundreds of machines and thousands of computational devices such as GPU cards. The system is flexible and can be used to express a wide variety of algorithms, including training and inference algorithms for deep neural network models, and it has been used for conducting research and for deploying machine learning systems into production across more than a dozen areas of computer science and other fields, including speech recognition, computer vision, robotics, information retrieval, natural language processing, geographic information extraction, and computational drug discovery. This paper describes the TensorFlow interface and an implementation of that interface that we have built at Google. The TensorFlow API and a reference implementation were released as an open-source package under the Apache 2.0 license in November, 2015 and are available at www.tensorflow.org.

10,447 citations