scispace - formally typeset
Search or ask a question
Journal ArticleDOI

Are Borders Inside or Outside

06 Oct 2020-Foundations of Science (Springer Netherlands)-pp 1-17
TL;DR: In this article, the authors show how the choice of an alternative instead of another is not arbitrary, rather points towards entirely different ontological, philosophical and physical commitments, which paves the way to novel interpretations and operational approaches to challenging issues such as black hole singularities, continuous time in quantum dynamics, chaotic nonlinear paths, logarithmic plots, demarcation of living beings.
Abstract: When a boat disappears over the horizon, does a distant observer detect the last moment in which the boat is visible, or the first moment in which the boat is not visible? This apparently ludicrous way of reasoning, heritage of long-lasting medieval debates on decision limit problems, paves the way to sophisticated contemporary debates concerning the methodological core of mathematics, physics and biology. These ancient, logically-framed conundrums throw us into the realm of bounded objects with fuzzy edges, where our mind fails to provide responses to plain questions such as: given a closed curve with a boundary (say, a cellular membrane) how do you recognize what is internal and what is external? We show how the choice of an alternative instead of another is not arbitrary, rather points towards entirely different ontological, philosophical and physical commitments. This paves the way to novel interpretations and operational approaches to challenging issues such as black hole singularities, continuous time in quantum dynamics, chaotic nonlinear paths, logarithmic plots, demarcation of living beings. In the sceptical reign where judgements seem to be suspended forever, the contemporary scientist stands for a sort of God equipped with infinite power who is utterly free to dictate the rules of the experimental settings.
Citations
More filters
Journal ArticleDOI
14 Jul 2017
TL;DR: In this paper, the authors show that some arguments in one of the two versions of Nicholas of Autrecourt's Quaestio de intensione visionis are taken almost verbatim from the anonymous Tractatus de sex inconvenientibus.
Abstract: Previously, the author tried to show that some arguments in one of the two versions of Nicholas of Autrecourt’s Quaestio de intensione visionis are taken almost verbatim from the anonymous Tractatus de sex inconvenientibus. This paper concentrates on the arguments themselves in order to consider two main issues: (a) the ‘translatability’ of limit decision problems, manifest in Autrecourt’s juxtaposition of questions de maximo et minimo, de primo et ultimo instanti, and the intension and remission of forms; (b) the importance of Parisian discussions of limit decision problems prior to the adoption of the new analytical languages developed at Oxford. Thus, the paper is divided in two sections, the first concerning some arguments of Autrecourt’s question, the second focusing on the link between one of Autrecourt’s arguments and the medieval tradition of commentaries on Aristotle’s De caelo, in which it is possible to find some antecedents of the analytical approach that later Parisian scholars (Autrecourt among them) would apply to these problems.

1 citations

References
More filters
Journal ArticleDOI
TL;DR: In this paper, the concept of black-hole entropy was introduced as a measure of information about a black hole interior which is inaccessible to an exterior observer, and it was shown that the entropy is equal to the ratio of the black hole area to the square of the Planck length times a dimensionless constant of order unity.
Abstract: There are a number of similarities between black-hole physics and thermodynamics. Most striking is the similarity in the behaviors of black-hole area and of entropy: Both quantities tend to increase irreversibly. In this paper we make this similarity the basis of a thermodynamic approach to black-hole physics. After a brief review of the elements of the theory of information, we discuss black-hole physics from the point of view of information theory. We show that it is natural to introduce the concept of black-hole entropy as the measure of information about a black-hole interior which is inaccessible to an exterior observer. Considerations of simplicity and consistency, and dimensional arguments indicate that the black-hole entropy is equal to the ratio of the black-hole area to the square of the Planck length times a dimensionless constant of order unity. A different approach making use of the specific properties of Kerr black holes and of concepts from information theory leads to the same conclusion, and suggests a definite value for the constant. The physical content of the concept of black-hole entropy derives from the following generalized version of the second law: When common entropy goes down a black hole, the common entropy in the black-hole exterior plus the black-hole entropy never decreases. The validity of this version of the second law is supported by an argument from information theory as well as by several examples.

6,591 citations

Journal ArticleDOI
TL;DR: It is shown that dynamical systems with spatial degrees of freedom naturally evolve into a self-organized critical point, and flicker noise, or 1/f noise, can be identified with the dynamics of the critical state.
Abstract: We show that dynamical systems with spatial degrees of freedom naturally evolve into a self-organized critical point. Flicker noise, or 1/f noise, can be identified with the dynamics of the critical state. This picture also yields insight into the origin of fractal objects.

6,486 citations

Journal ArticleDOI
05 Mar 2018-Nature
TL;DR: The realization of intrinsic unconventional superconductivity is reported—which cannot be explained by weak electron–phonon interactions—in a two-dimensional superlattice created by stacking two sheets of graphene that are twisted relative to each other by a small angle.
Abstract: The behaviour of strongly correlated materials, and in particular unconventional superconductors, has been studied extensively for decades, but is still not well understood. This lack of theoretical understanding has motivated the development of experimental techniques for studying such behaviour, such as using ultracold atom lattices to simulate quantum materials. Here we report the realization of intrinsic unconventional superconductivity-which cannot be explained by weak electron-phonon interactions-in a two-dimensional superlattice created by stacking two sheets of graphene that are twisted relative to each other by a small angle. For twist angles of about 1.1°-the first 'magic' angle-the electronic band structure of this 'twisted bilayer graphene' exhibits flat bands near zero Fermi energy, resulting in correlated insulating states at half-filling. Upon electrostatic doping of the material away from these correlated insulating states, we observe tunable zero-resistance states with a critical temperature of up to 1.7 kelvin. The temperature-carrier-density phase diagram of twisted bilayer graphene is similar to that of copper oxides (or cuprates), and includes dome-shaped regions that correspond to superconductivity. Moreover, quantum oscillations in the longitudinal resistance of the material indicate the presence of small Fermi surfaces near the correlated insulating states, in analogy with underdoped cuprates. The relatively high superconducting critical temperature of twisted bilayer graphene, given such a small Fermi surface (which corresponds to a carrier density of about 1011 per square centimetre), puts it among the superconductors with the strongest pairing strength between electrons. Twisted bilayer graphene is a precisely tunable, purely carbon-based, two-dimensional superconductor. It is therefore an ideal material for investigations of strongly correlated phenomena, which could lead to insights into the physics of high-critical-temperature superconductors and quantum spin liquids.

5,613 citations

Journal ArticleDOI
TL;DR: This Review looks at some key brain theories in the biological and physical sciences from the free-energy perspective, suggesting that several global brain theories might be unified within a free- energy framework.
Abstract: A free-energy principle has been proposed recently that accounts for action, perception and learning. This Review looks at some key brain theories in the biological (for example, neural Darwinism) and physical (for example, information theory and optimal control theory) sciences from the free-energy perspective. Crucially, one key theme runs through each of these theories — optimization. Furthermore, if we look closely at what is optimized, the same quantity keeps emerging, namely value (expected reward, expected utility) or its complement, surprise (prediction error, expected cost). This is the quantity that is optimized under the free-energy principle, which suggests that several global brain theories might be unified within a free-energy framework.

4,866 citations

Journal ArticleDOI
TL;DR: In this article, the authors consider a reformulation of quantum mechanics in terms of information theory, where all systems are assumed to be equivalent, there is no observer-observed distinction, and the theory describes only the information that systems have about each other.
Abstract: I suggest that the common unease with taking quantum mechanics as a fundamental description of nature (the “measurement problem”) could derive from the use of an incorrect notion, as the unease with the Lorentz transformations before Einstein derived from the notion of observer-independent time. I suggest that this incorrect notion that generates the unease with quantum mechanics is the notion of “observer-independent state” of a system, or “observer-independent values of physical quantities.” I reformulate the problem of the “interpretation of quantum mechanics” as the problem of deriving the formalism from a set of simple physical postulates. I consider a reformulation of quantum mechanics in terms of information theory. All systems are assumed to be equivalent, there is no observer-observed distinction, and the theory describes only the information that systems have about each other; nevertheless, the theory is complete.

887 citations