scispace - formally typeset
Search or ask a question
Journal ArticleDOI

Arrays of single-walled carbon nanotubes with full surface coverage for high-performance electronics

Qing Cao1, Shu-Jen Han1, George S. Tulevski1, Yu Zhu1, Darsen D. Lu1, Wilfried Haensch1 
01 Mar 2013-Nature Nanotechnology (Nature Research)-Vol. 8, Iss: 3, pp 180-186
TL;DR: It is shown that aligned arrays of semiconducting carbon nanotubes can be assembled using the Langmuir-Schaefer method, and the intrinsic mobility of the nanotube is preserved after array assembly.
Abstract: Arrays of semiconducting single-walled carbon nanotubes with a nanotube density of more than 500 tubes per micrometre can be assembled using the Langmuir–Schaefer method and used to make transistors with significant device performance.
Citations
More filters
Journal ArticleDOI
26 Sep 2013-Nature
TL;DR: This experimental demonstration is the most complex carbon-based electronic system yet realized, and a considerable advance because CNTs are prominent among a variety of emerging technologies that are being considered for the next generation of highly energy-efficient electronic systems.
Abstract: A computer built entirely using transistors based on carbon nanotubes, which is capable of multitasking and emulating instructions from the MIPS instruction set, is enabled by methods that overcome inherent challenges with this new technology. Carbon nanotubes have long been touted as promising building blocks for computers based on carbon rather than silicon. A main motivation towards this goal is the potential for circuits using carbon nanotube transistors to achieve high energy efficiency. Various carbon nanotube electronic circuit blocks have been demonstrated previously, but Max Shulaker et al. now reach a true milestone in the fields of carbon electronics and nanoelectronics by building a simple but functional computer made entirely from carbon nanotube transistors. Composed of 178 transistors, each containing between 10 and 200 carbon nanotubes, it runs a simple operating system and is capable of multitasking: it performs four tasks (summarized as instruction fetch, data fetch, arithmetic operation and write-back) and can run two different programs concurrently. The miniaturization of electronic devices has been the principal driving force behind the semiconductor industry, and has brought about major improvements in computational power and energy efficiency. Although advances with silicon-based electronics continue to be made, alternative technologies are being explored. Digital circuits based on transistors fabricated from carbon nanotubes (CNTs) have the potential to outperform silicon by improving the energy–delay product, a metric of energy efficiency, by more than an order of magnitude. Hence, CNTs are an exciting complement to existing semiconductor technologies1,2. Owing to substantial fundamental imperfections inherent in CNTs, however, only very basic circuit blocks have been demonstrated. Here we show how these imperfections can be overcome, and demonstrate the first computer built entirely using CNT-based transistors. The CNT computer runs an operating system that is capable of multitasking: as a demonstration, we perform counting and integer-sorting simultaneously. In addition, we implement 20 different instructions from the commercial MIPS instruction set to demonstrate the generality of our CNT computer. This experimental demonstration is the most complex carbon-based electronic system yet realized. It is a considerable advance because CNTs are prominent among a variety of emerging technologies that are being considered for the next generation of highly energy-efficient electronic systems3,4.

861 citations

Journal ArticleDOI
TL;DR: This work presents organic electrochemical transistors with a transconductance in the mS range, outperforming transistors from both traditional and emerging semiconductors.
Abstract: The development of transistors with high gain is essential for applications ranging from switching elements and drivers to transducers for chemical and biological sensing. Organic transistors have become well-established based on their distinct advantages, including ease of fabrication, synthetic freedom for chemical functionalization, and the ability to take on unique form factors. These devices, however, are largely viewed as belonging to the low-end of the performance spectrum. Here we present organic electrochemical transistors with a transconductance in the mS range, outperforming transistors from both traditional and emerging semiconductors. The transconductance of these devices remains fairly constant from DC up to a frequency of the order of 1 kHz, a value determined by the process of ion transport between the electrolyte and the channel. These devices, which continue to work even after being crumpled, are predicted to be highly relevant as transducers in biosensing applications.

582 citations

Journal ArticleDOI
14 Aug 2015-Science
TL;DR: The advantages and challenges for incorporating nanomaterials into transistors to improve performance are discussed in the context of different transistor applications, along with the breakthroughs needed to enable the next generation of technological advancement.
Abstract: For more than 50 years, silicon transistors have been continuously shrunk to meet the projections of Moore's law but are now reaching fundamental limits on speed and power use. With these limits at hand, nanomaterials offer great promise for improving transistor performance and adding new applications through the coming decades. With different transistors needed in everything from high-performance servers to thin-film display backplanes, it is important to understand the targeted application needs when considering new material options. Here the distinction between high-performance and thin-film transistors is reviewed, along with the benefits and challenges to using nanomaterials in such transistors. In particular, progress on carbon nanotubes, as well as graphene and related materials (including transition metal dichalcogenides and X-enes), outlines the advances and further research needed to enable their use in transistors for high-performance computing, thin films, or completely new technologies such as flexible and transparent devices.

471 citations


Cites background from "Arrays of single-walled carbon nano..."

  • ...packed (~0-nm pitch) arrays of CNTs for highperformance transistors (62), as they will result...

    [...]

Journal ArticleDOI
05 Dec 2018-ACS Nano
TL;DR: While the primary focus of this review is on the science framework of SWCNT growth, connections to mechanisms underlying the synthesis of other 1D and 2D materials such as boron nitride nanotubes and graphene are drawn.
Abstract: Advances in the synthesis and scalable manufacturing of single-walled carbon nanotubes (SWCNTs) remain critical to realizing many important commercial applications. Here we review recent breakthroughs in the synthesis of SWCNTs and highlight key ongoing research areas and challenges. A few key applications that capitalize on the properties of SWCNTs are also reviewed with respect to the recent synthesis breakthroughs and ways in which synthesis science can enable advances in these applications. While the primary focus of this review is on the science framework of SWCNT growth, we draw connections to mechanisms underlying the synthesis of other 1D and 2D materials such as boron nitride nanotubes and graphene.

354 citations

Journal ArticleDOI
TL;DR: This review attempts to survey the recent developments of electrochemical biosensors based on six types of carbon nanomaterials (CNs), i.e., graphene, carbon nanotubes, carbon dots, carbon Nanofibers, nanodiamonds and buckminsterfullerene.
Abstract: Carbon materials on the nanoscale exhibit diverse outstanding properties, rendering them extremely suitable for the fabrication of electrochemical biosensors. Over the past two decades, advances in this area have continuously emerged. In this review, we attempt to survey the recent developments of electrochemical biosensors based on six types of carbon nanomaterials (CNs), i.e., graphene, carbon nanotubes, carbon dots, carbon nanofibers, nanodiamonds and buckminsterfullerene. For each material, representative samples are introduced to expound the different roles of the CNs in electrochemical bioanalytical strategies. In addition, remaining challenges and perspectives for future developments are also briefly discussed.

301 citations

References
More filters
Journal ArticleDOI
26 Sep 1997-Science
TL;DR: In this paper, the Young's modulus, strength, and toughness of nanostructures are evaluated using an atomic force microscopy (AFM) approach. And the results showed that the strength of the SiC NRs were substantially greater than those found previously for larger SiC structures, and they approach theoretical values.
Abstract: The Young's modulus, strength, and toughness of nanostructures are important to proposed applications ranging from nanocomposites to probe microscopy, yet there is little direct knowledge of these key mechanical properties. Atomic force microscopy was used to determine the mechanical properties of individual, structurally isolated silicon carbide (SiC) nanorods (NRs) and multiwall carbon nanotubes (MWNTs) that were pinned at one end to molybdenum disulfide surfaces. The bending force was measured versus displacement along the unpinned lengths. The MWNTs were about two times as stiff as the SiC NRs. Continued bending of the SiC NRs ultimately led to fracture, whereas the MWNTs exhibited an interesting elastic buckling process. The strengths of the SiC NRs were substantially greater than those found previously for larger SiC structures, and they approach theoretical values. Because of buckling, the ultimate strengths of the stiffer MWNTs were less than those of the SiC NRs, although the MWNTs represent a uniquely tough, energy-absorbing material.

4,627 citations

Journal ArticleDOI
TL;DR: The Langmuir trough enables high quality organic layers (Langmuir-Blodgett films) to be deposited onto a variety of substrates as discussed by the authors, including two-dimensional magnetism, integrated and electro-optics, electron beam lithography, biological membranes, charge injection devices and field effect transistors.
Abstract: The Langmuir trough enables high quality organic layers (Langmuir-Blodgett films) to be deposited onto a variety of substrates. This article describes the preparation and characterization of these monolayer and multilayer films and reviews many of their potential applications; these include two-dimensional magnetism, integrated and electro-optics, electron beam lithography, biological membranes, charge injection devices and field-effect transistors.

1,269 citations

Journal ArticleDOI
TL;DR: Dense, perfectly aligned arrays of long, perfectly linear SWNTs are reported as an effective thin-film semiconductor suitable for integration into transistors and other classes of electronic devices, representing a route to large-scale integrated nanotube electronics.
Abstract: †Single-walled carbon nanotubes (SWNTs) have many exceptional electronic properties. Realizing the full potential of SWNTs in realistic electronic systems requires a scalable approach to device and circuit integration. We report the use of dense, perfectly aligned arrays of long, perfectly linear SWNTs as an effective thin-film semiconductor suitable for integration into transistors and other classes of electronic devices. The large number of SWNTs enable excellent device-level performance characteristics and good device-to-device uniformity, even with SWNTs that are electronically heterogeneous. Measurements on p- and n-channel transistors that involve as many as 2,100 SWNTs reveal device-level mobilities and scaled transconductances approaching 1,000 cm 2 V 21 s 21 and 3,000 S m 21 , respectively, and with current outputs of up to 1 A in devices that use interdigitated electrodes. PMOS and CMOS logic gates and mechanically flexible transistors on plastic provide examples of devices that can be formed with this approach. Collectively, these results may represent a route to large-scale integrated nanotube electronics.

1,152 citations

PatentDOI
16 Jun 2009-Nature
TL;DR: In this paper, a patterned layer of randomly oriented or partially aligned carbon nanotubes, such as one or more interconnected SWNT networks, is used to provide a semiconductor channel exhibiting improved electronic properties relative to conventional nanotube-based electronic systems.
Abstract: The present invention provides device components geometries and fabrication strategies for enhancing the electronic performance of electronic devices based on thin films of randomly oriented or partially aligned semiconducting nanotubes. In certain aspects, devices and methods of the present invention incorporate a patterned layer of randomly oriented or partially aligned carbon nanotubes, such as one or more interconnected SWNT networks, providing a semiconductor channel exhibiting improved electronic properties relative to conventional nanotubes-based electronic systems.

1,081 citations

Journal ArticleDOI
TL;DR: This review highlights post-synthetic approaches for sorting single-walled carbon nanotubes - including selective chemistry, electrical breakdown, dielectrophoresis, chromatography and ultracentrifugation - and progress towards selective growth of monodisperse samples.
Abstract: Single-walled carbon nanotubes tend to be produced in polydisperse mixtures with different lengths, diameters and electronic properties. This review article surveys the various techniques that have been developed for producing monodisperse samples from these mixtures. Selective growth techniques are also covered.

922 citations