scispace - formally typeset
Open Access

ArrayTrack: A Fine-Grained Indoor Location System

Reads0
Chats0
TLDR
The design and experimental evaluation of ArrayTrack is presented, an indoor location system that uses MIMO-based techniques to track wireless clients at a very fine granularity in real time, as they roam about a building, making for the first time ubiquitous real-time, fine-grained location available on the mobile handset.
Abstract
With myriad augmented reality, social networking, and retail shopping applications all on the horizon for the mobile handheld, a fast and accurate location technology will become key to a rich user experience. When roaming outdoors, users can usually count on a clear GPS signal for accurate location, but indoors, GPS often fades, and so up until recently, mobiles have had to rely mainly on rather coarse-grained signal strength readings. What has changed this status quo is the recent trend of dramatically increasing numbers of antennas at the indoor access point, mainly to bolster capacity and coverage with multiple-input, multiple-output (MIMO) techniques. We thus observe an opportunity to revisit the important problem of localization with a fresh perspective. This paper presents the design and experimental evaluation of ArrayTrack, an indoor location system that uses MIMO-based techniques to track wireless clients at a very fine granularity in real time, as they roam about a building. With a combination of FPGA and general purpose computing, we have built a prototype of the ArrayTrack system. Our results show that the techniques we propose can pinpoint 41 clients spread out over an indoor office environment to within 23 centimeters median accuracy, with the system incurring just 100 milliseconds latency, making for the first time ubiquitous real-time, fine-grained location available on the mobile handset.

read more

Content maybe subject to copyright    Report

Citations
More filters
Journal ArticleDOI

A Survey of Indoor Localization Systems and Technologies

TL;DR: This paper aims to provide a detailed survey of different indoor localization techniques, such as angle of arrival (AoA), time of flight (ToF), return time ofFlight (RTOF), and received signal strength (RSS) based on technologies that have been proposed in the literature.
Proceedings ArticleDOI

SpotFi: Decimeter Level Localization Using WiFi

TL;DR: SpotFi only uses information that is already exposed by WiFi chips and does not require any hardware or firmware changes, yet achieves the same accuracy as state-of-the-art localization systems.
Proceedings ArticleDOI

Zee: zero-effort crowdsourcing for indoor localization

TL;DR: Zee is presented -- a system that makes the calibration zero-effort, by enabling training data to be crowdsourced without any explicit effort on the part of users.
Proceedings ArticleDOI

Whole-home gesture recognition using wireless signals

TL;DR: WiSee is presented, a novel gesture recognition system that leverages wireless signals (e.g., Wi-Fi) to enable whole-home sensing and recognition of human gestures and achieves this goal without requiring instrumentation of the human body with sensing devices.
Journal ArticleDOI

CSI-Based Fingerprinting for Indoor Localization: A Deep Learning Approach

TL;DR: In this article, a deep-learning-based indoor fingerprinting system using channel state information (CSI) is presented, which includes an offline training phase and an online localization phase.
References
More filters
Book

Wireless Communications: Principles and Practice

TL;DR: WireWireless Communications: Principles and Practice, Second Edition is the definitive modern text for wireless communications technology and system design as discussed by the authors, which covers the fundamental issues impacting all wireless networks and reviews virtually every important new wireless standard and technological development, offering especially comprehensive coverage of the 3G systems and wireless local area networks (WLANs).
Journal ArticleDOI

Multiple emitter location and signal parameter estimation

TL;DR: In this article, a description of the multiple signal classification (MUSIC) algorithm, which provides asymptotically unbiased estimates of 1) number of incident wavefronts present; 2) directions of arrival (DOA) (or emitter locations); 3) strengths and cross correlations among the incident waveforms; 4) noise/interference strength.
Proceedings ArticleDOI

RADAR: an in-building RF-based user location and tracking system

TL;DR: RADAR is presented, a radio-frequency (RF)-based system for locating and tracking users inside buildings that combines empirical measurements with signal propagation modeling to determine user location and thereby enable location-aware services and applications.
Journal ArticleDOI

The active badge location system

TL;DR: A novel system for the location of people in an office environment is described, where members of staff wear badges that transmit signals providing information about their location to a centralized location service, through a network of sensors.
Proceedings ArticleDOI

The Cricket location-support system

TL;DR: The randomized algorithm used by beacons to transmit information, the use of concurrent radio and ultrasonic signals to infer distance, the listener inference algorithms to overcome multipath and interference, and practical beacon configuration and positioning techniques that improve accuracy are described.
Related Papers (5)