scispace - formally typeset
Search or ask a question
Journal ArticleDOI

Artificial Neural Network-Based Deep Learning Model for COVID-19 Patient Detection Using X-Ray Chest Images.

01 Jan 2021-Journal of Healthcare Engineering (Hindawi Limited)-Vol. 2021, pp 5513679-5513679
TL;DR: In this article, the authors proposed a novel convolutional neural network (CNN-) based deep learning fusion framework using the transfer learning concept where parameters (weights) from different models are combined into a single model to extract features from images which are then fed to a custom classifier for prediction.
Abstract: The world is experiencing an unprecedented crisis due to the coronavirus disease (COVID-19) outbreak that has affected nearly 216 countries and territories across the globe. Since the pandemic outbreak, there is a growing interest in computational model-based diagnostic technologies to support the screening and diagnosis of COVID-19 cases using medical imaging such as chest X-ray (CXR) scans. It is discovered in initial studies that patients infected with COVID-19 show abnormalities in their CXR images that represent specific radiological patterns. Still, detection of these patterns is challenging and time-consuming even for skilled radiologists. In this study, we propose a novel convolutional neural network- (CNN-) based deep learning fusion framework using the transfer learning concept where parameters (weights) from different models are combined into a single model to extract features from images which are then fed to a custom classifier for prediction. We use gradient-weighted class activation mapping to visualize the infected areas of CXR images. Furthermore, we provide feature representation through visualization to gain a deeper understanding of the class separability of the studied models with respect to COVID-19 detection. Cross-validation studies are used to assess the performance of the proposed models using open-access datasets containing healthy and both COVID-19 and other pneumonia infected CXR images. Evaluation results show that the best performing fusion model can attain a classification accuracy of 95.49% with a high level of sensitivity and specificity.

Content maybe subject to copyright    Report

Citations
More filters
Journal ArticleDOI
TL;DR: In this paper, the authors used a stacking approach combining transfer learning techniques and KNN algorithm for selection of the best model to detect COVID-19 in chest X-ray images.
Abstract: COVID-19 is an infectious disease-causing flu-like respiratory problem with various symptoms such as cough or fever, which in severe cases can cause pneumonia. The aim of this paper is to develop a rapid and accurate medical diagnosis support system to detect COVID-19 in chest X-ray images using a stacking approach combining transfer learning techniques and KNN algorithm for selection of the best model. In deep learning, we have multiple approaches for building a classification system for analyzing radiographic images. In this work, we used the transfer learning technique. This approach makes it possible to store and use the knowledge acquired from a pretrained convolutional neural network to solve a new problem. To ensure the robustness of the proposed system for diagnosing patients with COVID-19 using X-ray images, we used a machine learning method called the stacking approach to combine the performances of the many transfer learning-based models. The generated model was trained on a dataset containing four classes, namely, COVID-19, tuberculosis, viral pneumonia, and normal cases. The dataset used was collected from a six-source dataset of X-ray images. To evaluate the performance of the proposed system, we used different common evaluation measures. Our proposed system achieves an extremely good accuracy of 99.23% exceeding many previous related studies.

34 citations

Journal ArticleDOI
TL;DR: In this paper , the authors present the state-of-the-art deep learning based pneumonia and COVID-19 detection solutions, trends in recent studies, publicly available datasets, guidance to follow a deep learning process, challenges and potential future research directions in this domain.

12 citations

Journal ArticleDOI
TL;DR: This work has proposed a reliable ensemble model that can achieve the safety and health security of an individual and improve accuracy in the classification or forecast accuracy.
Abstract: Machine intelligence can convert raw clinical data into an informational source that helps make decisions and predictions. As a result, cardiovascular diseases are more likely to be addressed as early as possible before affecting the lifespan. Artificial intelligence has taken research on disease diagnosis and identification to another level. Despite several methods and models coming into existence, there is a possibility of improving the classification or forecast accuracy. By selecting the connected combination of models and features, we can improve accuracy. To achieve a better solution, we have proposed a reliable ensemble model in this paper. The proposed model produced results of 96.75% on the cardiovascular disease dataset obtained from the Mendeley Data Center, 93.39% on the comprehensive dataset collected from IEEE DataPort, and 88.24% on data collected from the Cleveland dataset. With this proposed model, we can achieve the safety and health security of an individual.

11 citations

Journal ArticleDOI
14 May 2022-Symmetry
TL;DR: A new computer-aided diagnosis application for COVID-19 detection using deep learning techniques, which receives symmetric X-ray data as the input, is presented in this study by combining Convolutional Neural Networks (CNN) with Ant Lion Optimization Algorithm (ALO) and Multiclass Naïve Bayes Classifier (NB).
Abstract: Due to false negative results of the real-time Reverse Transcriptase-Polymerase Chain Reaction (RT-PCR) test, the complemental practices such as computed tomography (CT) and X-ray in combination with RT-PCR are discussed to achieve a more accurate diagnosis of COVID-19 in clinical practice. Since radiology includes visual understanding as well as decision making under limited conditions such as uncertainty, urgency, patient burden, and hospital facilities, mistakes are inevitable. Therefore, there is an immediate requirement to carry out further investigation and develop new accurate detection and identification methods to provide automatically quantitative evaluation of COVID-19. In this paper, we propose a new computer-aided diagnosis application for COVID-19 detection using deep learning techniques. A new technique, which receives symmetric X-ray data as the input, is presented in this study by combining Convolutional Neural Networks (CNN) with Ant Lion Optimization Algorithm (ALO) and Multiclass Naïve Bayes Classifier (NB). Moreover, several other classifiers such as Softmax, Support Vector Machines (SVM), K-Nearest Neighbors (KNN) and Decision Tree (DT) are combined with CNN. The promising results of these classifiers are evaluated and presented for accuracy, precision, and F1-score metrics. NB classifier with Ant Lion Optimization Algorithm and CNN produced the best results with 98.31% accuracy, 100% precision and 98.25% F1-score and with the lowest execution time.

9 citations

Journal ArticleDOI
TL;DR: Wang et al. as mentioned in this paper proposed Covid-19 Prudential Expectation Strategy (CPES) as a new strategy for predicting the behavior of the person's body if he has been infected with Covid19, which composes of three phases called outlier rejection phase (ORP), feature selection phase (FSP), and classification phase (CP).

7 citations

References
More filters
Journal Article
TL;DR: A new technique called t-SNE that visualizes high-dimensional data by giving each datapoint a location in a two or three-dimensional map, a variation of Stochastic Neighbor Embedding that is much easier to optimize, and produces significantly better visualizations by reducing the tendency to crowd points together in the center of the map.
Abstract: We present a new technique called “t-SNE” that visualizes high-dimensional data by giving each datapoint a location in a two or three-dimensional map. The technique is a variation of Stochastic Neighbor Embedding (Hinton and Roweis, 2002) that is much easier to optimize, and produces significantly better visualizations by reducing the tendency to crowd points together in the center of the map. t-SNE is better than existing techniques at creating a single map that reveals structure at many different scales. This is particularly important for high-dimensional data that lie on several different, but related, low-dimensional manifolds, such as images of objects from multiple classes seen from multiple viewpoints. For visualizing the structure of very large datasets, we show how t-SNE can use random walks on neighborhood graphs to allow the implicit structure of all of the data to influence the way in which a subset of the data is displayed. We illustrate the performance of t-SNE on a wide variety of datasets and compare it with many other non-parametric visualization techniques, including Sammon mapping, Isomap, and Locally Linear Embedding. The visualizations produced by t-SNE are significantly better than those produced by the other techniques on almost all of the datasets.

30,124 citations

Journal ArticleDOI
TL;DR: The independent zoonotic transmission of SARS-CoV and SARS -CoV-2 highlights the need for studying viruses at the species level to complement research focused on individual pathogenic viruses of immediate significance.
Abstract: The present outbreak of a coronavirus-associated acute respiratory disease called coronavirus disease 19 (COVID-19) is the third documented spillover of an animal coronavirus to humans in only two decades that has resulted in a major epidemic. The Coronaviridae Study Group (CSG) of the International Committee on Taxonomy of Viruses, which is responsible for developing the classification of viruses and taxon nomenclature of the family Coronaviridae, has assessed the placement of the human pathogen, tentatively named 2019-nCoV, within the Coronaviridae. Based on phylogeny, taxonomy and established practice, the CSG recognizes this virus as forming a sister clade to the prototype human and bat severe acute respiratory syndrome coronaviruses (SARS-CoVs) of the species Severe acute respiratory syndrome-related coronavirus, and designates it as SARS-CoV-2. In order to facilitate communication, the CSG proposes to use the following naming convention for individual isolates: SARS-CoV-2/host/location/isolate/date. While the full spectrum of clinical manifestations associated with SARS-CoV-2 infections in humans remains to be determined, the independent zoonotic transmission of SARS-CoV and SARS-CoV-2 highlights the need for studying viruses at the species level to complement research focused on individual pathogenic viruses of immediate significance. This will improve our understanding of virus–host interactions in an ever-changing environment and enhance our preparedness for future outbreaks.

5,527 citations

Journal ArticleDOI
TL;DR: The approaches for developing effective vaccines and therapeutic combinations to cope with this viral outbreak are discussed and the emergence and pathogenicity of COVID-19 infection and previous human coronaviruses severe acute respiratory syndrome coronavirus (SARS-CoV) and middle east respiratory virus (MERS- coV) is analyzed.

2,643 citations

Journal ArticleDOI
TL;DR: COVID-Net is introduced, a deep convolutional neural network design tailored for the detection of COVID-19 cases from chest X-ray (CXR) images that is open source and available to the general public, and COVIDx, an open access benchmark dataset comprising of 13,975 CXR images across 13,870 patient patient cases.
Abstract: The Coronavirus Disease 2019 (COVID-19) pandemic continues to have a devastating effect on the health and well-being of the global population. A critical step in the fight against COVID-19 is effective screening of infected patients, with one of the key screening approaches being radiology examination using chest radiography. It was found in early studies that patients present abnormalities in chest radiography images that are characteristic of those infected with COVID-19. Motivated by this and inspired by the open source efforts of the research community, in this study we introduce COVID-Net, a deep convolutional neural network design tailored for the detection of COVID-19 cases from chest X-ray (CXR) images that is open source and available to the general public. To the best of the authors' knowledge, COVID-Net is one of the first open source network designs for COVID-19 detection from CXR images at the time of initial release. We also introduce COVIDx, an open access benchmark dataset that we generated comprising of 13,975 CXR images across 13,870 patient patient cases, with the largest number of publicly available COVID-19 positive cases to the best of the authors' knowledge. Furthermore, we investigate how COVID-Net makes predictions using an explainability method in an attempt to not only gain deeper insights into critical factors associated with COVID cases, which can aid clinicians in improved screening, but also audit COVID-Net in a responsible and transparent manner to validate that it is making decisions based on relevant information from the CXR images. By no means a production-ready solution, the hope is that the open access COVID-Net, along with the description on constructing the open source COVIDx dataset, will be leveraged and build upon by both researchers and citizen data scientists alike to accelerate the development of highly accurate yet practical deep learning solutions for detecting COVID-19 cases and accelerate treatment of those who need it the most.

2,193 citations

Journal ArticleDOI
TL;DR: Convergence with probability one is proved for a variety of classical optimization and identification problems and it is demonstrated for these problems that the proposed algorithm achieves the highest possible rate of convergence.
Abstract: A new recursive algorithm of stochastic approximation type with the averaging of trajectories is investigated. Convergence with probability one is proved for a variety of classical optimization and identification problems. It is also demonstrated for these problems that the proposed algorithm achieves the highest possible rate of convergence.

1,970 citations