scispace - formally typeset
Search or ask a question
Journal ArticleDOI

Astacins, serralysins, snake venom and matrix metalloproteinases exhibit identical zinc-binding environments (HEXXHXXGXXH and Met-turn) and topologies and should be grouped into a common family, the 'metzincins'

27 Sep 1993-FEBS Letters (Wiley-Blackwell)-Vol. 331, Iss: 1, pp 134-140
TL;DR: X‐ray crystal structures of two zinc endopeptidases, astacin from crayfish and adamalysin II from snake venom, reveal a strong overall topological equivalence and virtually identical extended HEXXHXXGXXH zinc‐binding segments, but in addition a methionine‐containing turn of similar conformation (the ‘Met‐turn’), which forms a hydrophobic basis for the zinc ion and the three liganding histidine residues.
About: This article is published in FEBS Letters.The article was published on 1993-09-27 and is currently open access. It has received 725 citations till now. The article focuses on the topics: Astacin & Adamalysin.
Citations
More filters
Journal ArticleDOI
TL;DR: This review describes the members of the matrixin family and discusses substrate specificity, domain structure and function, the activation of proMMPs, the regulation of matrixin activity by tissue inhibitors of metalloproteinases, and their pathophysiological implication.
Abstract: Matrix metalloproteinases (MMPs), also designated matrixins, hydrolyze components of the extracellular matrix. These proteinases play a central role in many biological processes, such as embryogenesis, normal tissue remodeling, wound healing, and angiogenesis, and in diseases such as atheroma, arthritis, cancer, and tissue ulceration. Currently 23 MMP genes have been identified in humans, and most are multidomain proteins. This review describes the members of the matrixin family and discusses substrate specificity, domain structure and function, the activation of proMMPs, the regulation of matrixin activity by tissue inhibitors of metalloproteinases, and their pathophysiological implication.

4,411 citations

Journal ArticleDOI
TL;DR: The members of the MMP family are introduced and their domain structure and function, proenyme activation, the mechanism of inhibition by TIMPs and their significance in physiology and pathology are discussed.
Abstract: Matrix metalloproteinases (MMPs), also called matrixins, function in the extracellular environment of cells and degrade both matrix and non-matrix proteins. They play central roles in morphogenesis, wound healing, tissue repair and remodelling in response to injury, e.g. after myocardial infarction, and in progression of diseases such as atheroma, arthritis, cancer and chronic tissue ulcers. They are multi-domain proteins and their activities are regulated by tissue inhibitors of metalloproteinases (TIMPs). This review introduces the members of the MMP family and discusses their domain structure and function, proenyme activation, the mechanism of inhibition by TIMPs and their significance in physiology and pathology.

2,929 citations


Cites background from "Astacins, serralysins, snake venom ..."

  • ...A (pappalysins, PAPP-A), and they are collectively called ‘‘metzincins’’ [21]....

    [...]

  • ...The catalytic domain also contains a conserved methionine, forming a ‘‘Met-turn’’ eight residues after the zinc binding motif, which forms a base to support the structure around the catalytic zinc [21]....

    [...]

Journal ArticleDOI
TL;DR: Recent studies in mice and flies point to essential roles of MMPs as mediators of change and physical adaptation in tissues, whether developmentally regulated, environmentally induced or disease associated.
Abstract: Matrix metalloproteinases (MMPs) were discovered because of their role in amphibian metamorphosis, yet they have attracted more attention because of their roles in disease. Despite intensive scrutiny in vitro, in cell culture and in animal models, the normal physiological roles of these extracellular proteases have been elusive. Recent studies in mice and flies point to essential roles of MMPs as mediators of change and physical adaptation in tissues, whether developmentally regulated, environmentally induced or disease associated.

2,634 citations

Journal ArticleDOI
TL;DR: Recent findings indicate that matrix metalloproteinases act on pro-inflammatory cytokines, chemokines and other proteins to regulate varied aspects of inflammation and immunity.
Abstract: As their name implies, matrix metalloproteinases are thought to be responsible for the turnover and degradation of the extracellular matrix. However, matrix degradation is neither the sole nor the main function of these proteinases. Indeed, as we discuss here, recent findings indicate that matrix metalloproteinases act on pro-inflammatory cytokines, chemokines and other proteins to regulate varied aspects of inflammation and immunity.

1,745 citations

Journal ArticleDOI
TL;DR: Zinc enzymology is, compared to some other current areas of metallobiochemistry, a maturing field, but in addition to further developments of structure-function relationships it has also provided a number of surprising new results and ideas in the last few years.
Abstract: Zinc enzymology is, compared to some other current areas of metallobiochemistry, a maturing field, but in addition to further developments of structure-function relationships it has also provided a number of surprising new results and ideas in the last few years. In fact, the number of studies makes it impossible to provide a comprehensive review of the recent literature on zinc enzymology here, and the authors therefore focus on those zinc enzymes for which structure-function relationships are possible on the basis of structural and biochemical data. This means that, with a few exceptions, only zinc enzymes for which NMR or crystal structures are available are included here. Another seemingly simple, yet experimentally sometimes complex issue concerns the choice of which metalloenzyme is a zinc enzyme. Since there is in principle no difference in chemical catalysis by low-affinity compared to high-affinity metal sites, some of these enzymes are also included in this article, especially if they are or have been discussed as zinc enzymes, or are active with zinc. 552 refs.

1,257 citations

References
More filters
Journal ArticleDOI
TL;DR: Latency is overcome by physical, chemical, and enzymatic treatments that separate the cysteine residue from the zinc Expression of the metalloproteinases is switched on by a variety of agents acting through regulatory elements of the gene, particularly the AP‐1 binding site.
Abstract: Matrix metalloproteinases are an important group of zinc enzymes responsible for degradation of the extracellular matrix components such as collagen and proteoglycans in normal embryogenesis and remodeling and in many disease processes such as arthritis, cancer, periodontitis, and osteoporosis. A matrixin family is defined, comprising at least seven members that range in size from Mr 28,000 to 92,000 and are related in gene sequence to collagenase. All family members are secreted as zymogens that lose peptides of about 10,000 daltons upon activation. Latency is due to a conserved cysteine that binds to zinc at the active center. Latency is overcome by physical (chaotropic agents), chemical (HOCl, mercurials), and enzymatic (trypsin, plasmin) treatments that separate the cysteine residue from the zinc. Expression of the metalloproteinases is switched on by a variety of agents acting through regulatory elements of the gene, particularly the AP-1 binding site. A family of protein inhibitors of Mr 28,500 or less binds strongly and stoichiometrically in noncovalent fashion to inhibit members of the family. The serum protein alpha 2-macroglobulin and relatives are also strongly inhibitory.

3,321 citations

Journal ArticleDOI
TL;DR: Experiments designed to improve the understanding of metalloproteinase regulation have also resulted in new insights into mechanisms by which growth factors and proto-oncogenes may regulate biological processes.

1,608 citations

Journal ArticleDOI
TL;DR: It is suggested that the classification by families could be used as an extension of the current classification by catalytic type, and some of these contain members with quite diverse peptidase activities.
Abstract: The available amino acid sequences of peptidases have been examined, and the enzymes have been allocated to evolutionary families. Some of the families can be grouped together in 'clans' that show signs of distant relationship, but nevertheless, it appears that there may be as many as 60 evolutionary lines of peptidases with separate origins. Some of these contain members with quite diverse peptidase activities, and yet there are some striking examples of convergence. We suggest that the classification by families could be used as an extension of the current classification by catalytic type.

884 citations

Journal ArticleDOI
TL;DR: In this article, the Cys73 residue is removed from the active-site zinc atom and its replacement by water, with the concomitant exposure of the active site to dithionitrobenzoate.
Abstract: Latent human fibroblast collagenase (HFC) can be activated by a variety of seemingly disparate means. In addition to the well-characterized activation by trypsin and organomercurial compounds, the enzyme can be activated to various extents by surfactants such as sodium dodecyl sulfate, by chaotropic ions such as SCN-, by disulfide compounds such as oxidized glutathione, by sulfhydryl alkylating agents such as N-ethylmaleimide, and by oxidants such as NaOCl. The underlying basis for these activations is the modification, exposure, or proteolytic release of the Cys73 residue from its habitat in the latent enzyme where it is thought to be complexed to the active-site zinc atom. This residue is not accessible for reaction with small molar excesses of dithionitrobenzoate in native, latent HFC. However, on addition of EDTA, this residue becomes fully exposed and is quantitatively labeled. All modes of activation of latent HFC are believed to involve the dissociation of Cys73 from the active-site zinc atom and its replacement by water, with the concomitant exposure of the active site. This is thought to be the primary event that precedes the well-known autolytic cleavages that are observed following the appearance of collagenase activity. The dissociation of Cys73 from the zinc atom in the latent enzyme "switches" the role of the zinc from a noncatalytic to a catalytic one. This "cysteine switch" mechanism of regulation may be applicable to the entire collagenase gene family.

679 citations