scispace - formally typeset
Search or ask a question
Journal ArticleDOI

Asymmetric transition-metal-catalyzed allylic alkylations: applications in total synthesis.

21 Jun 2003-Chemical Reviews (American Chemical Society)-Vol. 103, Iss: 8, pp 2921-2943
TL;DR: Alkylations with Phenols, Nitrogen Nucleophiles in AAA Total Synthesis, and Considerations for Enantioselective Allylic Alkylation are presented.
Abstract: A. Primary Alcohols as Nucleophiles 2931 B. Carboxylates as Nucleophiles 2931 C. Alkylations with Phenols 2932 IV. Nitrogen Nucleophiles in AAA Total Synthesis 2935 A. Alkylamines as Nucleophiles 2935 B. Azides as a Nucleophile 2936 C. Sulfonamide Nucleophiles 2937 D. Imide Nucleophiles 2938 E. Heterocyclic Amine Nucleophiles 2940 V. Sulfur Nucleophiles 2941 VI. Summary and Conclusions 2941 VII. Acknowledgment 2941 VIII. References 2942 I. Considerations for Enantioselective Allylic Alkylation
Citations
More filters
Journal ArticleDOI
TL;DR: A review of palladium-catalyzed coupling of CH bonds with organometallic reagents through a PdII/Pd0 catalytic cycle can be found in this paper.
Abstract: Pick your Pd partners: A number of catalytic systems have been developed for palladium-catalyzed CH activation/CC bond formation. Recent studies concerning the palladium(II)-catalyzed coupling of CH bonds with organometallic reagents through a PdII/Pd0 catalytic cycle are discussed (see scheme), and the versatility and practicality of this new mode of catalysis are presented. Unaddressed questions and the potential for development in the field are also addressed. In the past decade, palladium-catalyzed CH activation/CC bond-forming reactions have emerged as promising new catalytic transformations; however, development in this field is still at an early stage compared to the state of the art in cross-coupling reactions using aryl and alkyl halides. This Review begins with a brief introduction of four extensively investigated modes of catalysis for forming CC bonds from CH bonds: PdII/Pd0, PdII/PdIV, Pd0/PdII/PdIV, and Pd0/PdII catalysis. A more detailed discussion is then directed towards the recent development of palladium(II)-catalyzed coupling of CH bonds with organometallic reagents through a PdII/Pd0 catalytic cycle. Despite the progress made to date, improving the versatility and practicality of this new reaction remains a tremendous challenge.

3,533 citations

Journal ArticleDOI
Chao-Jun Li1
TL;DR: This work over the past several years to form carbon-carbon bonds directly from two different C-H bonds under oxidative conditions, cross-dehydrogenative coupling (CDC) is described, which provides an alternative to the separate steps of prefunctionalization and defunctionsalization that have traditionally been part of synthetic design.
Abstract: Synthetic chemists aspire both to develop novel chemical reactions and to improve reaction conditions to maximize resource efficiency, energy efficiency, product selectivity, operational simplicity, and environmental health and safety. Carbon−carbon bond formation is a central part of many chemical syntheses, and innovations in these types of reactions will profoundly improve overall synthetic efficiency. This Account describes our work over the past several years to form carbon−carbon bonds directly from two different C−H bonds under oxidative conditions, cross-dehydrogenative coupling (CDC). We have focused most of our efforts on carbon−carbon bonds formed via the functionalization of sp3 C−H bonds with other C−H bonds. In the presence of simple and cheap catalysts such as copper and iron salts and oxidants such as hydrogen peroxide, dioxygen, tert-butylhydroperoxide, and 2,3-dichloro-5,6-dicyanobenzoquinone (DDQ), we can directly functionalize various sp3 C−H bonds by other C−H bonds without requiring ...

2,308 citations

Journal ArticleDOI
TL;DR: In this Review, highlights of a number of selected syntheses are discussed, demonstrating the enormous power of these processes in the art of total synthesis and underscore their future potential in chemical synthesis.
Abstract: In studying the evolution of organic chemistry and grasping its essence, one comes quickly to the conclusion that no other type of reaction plays as large a role in shaping this domain of science than carbon-carbon bond-forming reactions. The Grignard, Diels-Alder, and Wittig reactions are but three prominent examples of such processes, and are among those which have undeniably exercised decisive roles in the last century in the emergence of chemical synthesis as we know it today. In the last quarter of the 20th century, a new family of carbon-carbon bond-forming reactions based on transition-metal catalysts evolved as powerful tools in synthesis. Among them, the palladium-catalyzed cross-coupling reactions are the most prominent. In this Review, highlights of a number of selected syntheses are discussed. The examples chosen demonstrate the enormous power of these processes in the art of total synthesis and underscore their future potential in chemical synthesis.

2,268 citations

Journal ArticleDOI
TL;DR: A new iron(III) halide-promoted aza-Prins cyclization between γ,δ-unsaturated tosylamines and aldehydes provides six-membered azacycles in good to excellent yields.
Abstract: A new iron(III) halide-promoted aza-Prins cyclization between γ,δ-unsaturated tosylamines and aldehydes provides six-membered azacycles in good to excellent yields. The process is based on the consecutive generation of γ-unsaturated-iminium ion and further nucleophilic attack by the unsaturated carbon−carbon bond. Homoallyl tosylamine leads to trans-2-alkyl-4-halo-1-tosylpiperidine as the major isomer. In addition, the alkyne aza-Prins cyclization between homopropargyl tosylamine and aldehydes gives 2-alkyl-4-halo-1-tosyl-1,2,5,6-tetrahydropyridines as the only cyclic products. The piperidine ring is widely distributed throughout Nature, e.g., in alkaloids,1 and is an important scaffold for drug discovery, being the core of many pharmaceutically significant compounds.2,3 The syntheses of these type of compounds have been extensively studied in the development of new drugs containing six-membered-ring heterocycles.4 Reactions between N-acyliminium ions and nucleophiles, also described as amidoalkylation or Mannich-type condensations, have been frequently used to introduce substituents at the R-carbon of an amine.5 There are several examples that involve an intramolecular attack of a nucleophilic olefin into an iminium cation for the construction of a heterocyclic ring system.6 Traditionally, the use of hemiaminals or their derivatives as precursors of N-acyliminium intermediates has been a common two-step strategy in these reactions.6a Among this type of cyclization is the aza-Prins cyclization,7 which uses alkenes as intramolecular nucleophile. However, cy† X-ray analysis. E-mail address: malopez@ull.es. (1) (a) Fodor, G. B.; Colasanti, B. Alkaloids: Chemical and Biological PerspectiVes; Pelletier, S. W., Ed.; Wiley: New York, 1985; Vol. 23, pp 1-90. (b) Baliah, V.; Jeyarama, R.; Chandrasekaran, L. Chem. ReV. 1983, 83, 379-423. (2) Watson, P. S.; Jiang, B.; Scott, B. Org. Lett. 2000, 2, 3679-3681. (3) Horton, D. A.; Bourne, G. T.; Smythe, M. L. Chem. ReV. 2003, 103, 893-930. (4) Buffat, M. G. P. Tetrahedron 2004, 60, 1701-1729 and references therein. (5) Speckamp, W. N.; Moolenaar, M. J. Tetrahedron 2000, 56, 3187- 3856 and references therein. (6) (a) Hiemstra, H.; Speckamp, W. N. In ComprehensiVe Organic Synthesis; Trost, B. M., Fleming, O., Heathcock, C. H., Eds.; Pergamon: New York, 1991; Vol. 2, pp 1047-1081. (b) Speckamp, W. N.; Hiemstra, H. Tetrahedron 1985, 41, 4367-4416. (7) (a) Dobbs, A. P.; Guesne, S. J. J.; Hursthouse, M. B.; Coles, S. J. Synlett 2003, 11, 1740-1742. (b) Dobbs, A. P.; Guesne, S. J. J.; Martinove, S.; Coles, S. J.; Hursthouse, M. B. J. Org. Chem. 2003, 68, 7880-7883. (c) Hanessian, S.; Tremblay, M.; Petersen, F. W. J. Am. Chem. Soc. 2004, 126, 6064-6071 and references therein. (d) Dobbs, A. P.; Guesne, S. J. Synlett 2005, 13, 2101-2103. ORGANIC

1,854 citations

References
More filters
Book
13 Aug 1993
TL;DR: Asymmetric Hydrogenation (T. Ohkuma, et al. as discussed by the authors ), asymmetric carbon-Carbon Bond-Forming Reactions (K. Nozaki & I. Negishi). Asymmetric Addition and Insertion Reactions of Catalytically-Generated Metal Carbenes (M. O'Donnell), and asymptotic phase-transfer Reactions.
Abstract: Asymmetric Hydrogenation (T. Ohkuma, et al.). Asymmetric Hydrosilylation and Related Reactions (H. Nishiyama & K. Itoh). Asymmetric Isomerization of Allylamines (S. Akutagawa, et al.). Asymmetric Carbometallations (E. Negishi). Asymmetric Addition and Insertion Reactions of Catalytically-Generated Metal Carbenes (M. Doyle). Asymmetric Oxidations and Related Reactions (R. Johnson, et al.). Asymmetric Carbonylations (K. Nozaki & I. Ojima). Asymmetric Carbon-Carbon Bond-Forming Reactions (K. Maruoka, et al.). Asymmetric Amplification and Autocatalysis (K. Soai & T. Shibata). Asymmetric Phase-Transfer Reactions (M. O'Donnell). Asymmetric Polymerization (Y. Okamoto & T. Nakano). Epilogue. Appendix. Index.

2,758 citations

Journal ArticleDOI
TL;DR: The focus of this review is on the area of enantioselective transition metal-catalyzed allylic alkylations which may involve C-C as well as C-X (X ) H or heteroatom) bond formation.
Abstract: Efficient and reliable amplification of chirality has borne its greatest fruit with transition metal-catalyzed reactions since enantiocontrol may often be imposed by replacing an achiral or chiral racemic ligand with one that is chiral and scalemic While the most thoroughly developed enantioselective transition metal-catalyzed reactions are those involving transfer of oxygen (epoxidation and dihydroxylation)1,2 and molecular hydrogen,3 the focus of this review is on the area of enantioselective transition metal-catalyzed allylic alkylations which may involve C-C as well as C-X (X ) H or heteroatom) bond formation4-9 The synthetic utility of transitionmetal-catalyzed allylic alkylations has been soundly demonstrated since its introduction nearly three decades ago10-21 In contrast to processes where the allyl moiety acts as the nucleophilic partner, we will limit our discussion to processes which result in nucleophilic displacements on allylic substrates (eq 1) Such reactions have been recorded with a broad

2,576 citations

Journal ArticleDOI
TL;DR: Chiral phosphinooxazolines (PHOX ligands) as discussed by the authors coordinate to a metal center with a N-and a P-atom, allowing effective enantiocontrol in a variety of metal-catalyzed reactions.
Abstract: Chiral phosphinooxazolines (PHOX ligands), which coordinate to a metal center with a N- and a P-atom, allow effective enantiocontrol in a variety of metal-catalyzed reactions. They are readily synthesized, and because of their modular structure, the steric and electronic properties can be tailored for a specific application by variation of the oxazoline ring, the backbone, and the phosphine moiety.

1,116 citations

Journal ArticleDOI
TL;DR: In this article, a new class of ligands for asymmetric transition metal catalysis based on 2-(diphenylphosphino)benzoic acid was used in a mechanistically defined palladium-catalyzed reaction in which enantiodifferentiation was the result of selective ionization of substrates derived from cis-2-cycloalkene-1,4-diols.
Abstract: A new class of ligands for asymmetric transition metal catalysis based on 2-(diphenylphosphino)benzoic acid was used in a mechanistically-defined palladium-catalyzed reaction in which enantiodifferentiation was the result of selective ionization of substrates derived from cis-2-cycloalkene-1,4-diols. By making rational, stepwise changes in the ligand structure, the structural requirements for good asymmetric induction were probed. The absolute stereochemistry of the products was found to be related to the chirality of the ligand in a predictable fashion

444 citations