scispace - formally typeset
Search or ask a question
Journal ArticleDOI

Asymmetric Y junctions in silicon waveguides for on-chip mode-division multiplexing

01 Jun 2013-Optics Letters (Opt Lett)-Vol. 38, Iss: 11, pp 1854-1856
TL;DR: Silicon waveguide asymmetric Y junction mode multiplexers and demultiplexers are demonstrated for applications in on-chip mode-division multiplexing (MDM) and interference effects are shown to be advantageous for low-crosstalk MDM, even while using compact Y junctions designed to be outside the mode-sorting regime.
Abstract: Silicon waveguide asymmetric Y junction mode multiplexers and demultiplexers are demonstrated for applications in on-chip mode-division multiplexing (MDM). We measure demultiplexed crosstalk as low as -30 dB, <-9 dB over the C band, and insertion loss <1.5 dB for multimode links up to 1.2 mm in length. The frequency response of these devices is shown to depend upon Y junction angle and multimode interconnect length. Interference effects are shown to be advantageous for low-crosstalk MDM, even while using compact Y junctions designed to be outside the mode-sorting regime.
Citations
More filters
Journal ArticleDOI
TL;DR: This work shows the first microring-based demonstration of on-chip WDM-compatible mode-division multiplexing with low modal crosstalk and loss, which can potentially increase the aggregate data rate by many times for on- chip ultrahigh bandwidth communications.
Abstract: Significant effort in optical-fibre research has been put in recent years into realizing mode-division multiplexing (MDM) in conjunction with wavelength-division multiplexing (WDM) to enable further scaling of the communication bandwidth per fibre. In contrast, almost all integrated photonics operate exclusively in the single-mode regime. MDM is rarely considered for integrated photonics because of the difficulty in coupling selectively to high-order modes, which usually results in high inter-modal crosstalk. Here we show the first microring-based demonstration of on-chip WDM-compatible mode-division multiplexing with low modal crosstalk and loss. Our approach can potentially increase the aggregate data rate by many times for on-chip ultrahigh bandwidth communications.

655 citations

Journal ArticleDOI
TL;DR: This paper focuses on SDM for fiber-optic communication using few-mode fibers or multimode fibers, in particular on the critical challenge of mode crosstalk, and presents the prospects for SDM in optical transmission and networking.
Abstract: Space-division multiplexing (SDM) uses multiplicity of space channels to increase capacity for optical communication. It is applicable for optical communication in both free space and guided waves. This paper focuses on SDM for fiber-optic communication using few-mode fibers or multimode fibers, in particular on the critical challenge of mode crosstalk. Multiple-input–multiple-output (MIMO) equalization methods developed for wireless communication can be applied as an electronic method to equalize mode crosstalk. Optical approaches, including differential modal group delay management, strong mode coupling, and multicore fibers, are necessary to bring the computational complexity for MIMO mode crosstalk equalization to practical levels. Progress in passive devices, such as (de)multiplexers, and active devices, such as amplifiers and switches, which are considered straightforward challenges in comparison with mode crosstalk, are reviewed. Finally, we present the prospects for SDM in optical transmission and networking.

621 citations

Journal ArticleDOI
TL;DR: In this paper, a gradient metasurface structure consisting of phased arrays of plasmonic or dielectric nanoantennas can be used to control guided waves via strong optical scattering at subwavelength intervals.
Abstract: Research on two-dimensional designer optical structures, or metasurfaces, has mainly focused on controlling the wavefronts of light propagating in free space. Here, we show that gradient metasurface structures consisting of phased arrays of plasmonic or dielectric nanoantennas can be used to control guided waves via strong optical scattering at subwavelength intervals. Based on this design principle, we experimentally demonstrate waveguide mode converters, polarization rotators and waveguide devices supporting asymmetric optical power transmission. We also demonstrate all-dielectric on-chip polarization rotators based on phased arrays of Mie resonators with negligible insertion losses. Our gradient metasurfaces can enable small-footprint, broadband and low-loss photonic integrated devices.

302 citations

Journal ArticleDOI
TL;DR: In this paper, the authors designed and built a new type of spatial mode multiplexer based on MPLC, with very low intrinsic loss and high mode selectivity, and demonstrated its performance for the first 6 eigenmodes of a few-mode fiber.
Abstract: We designed and built a new type of spatial mode multiplexer, based on Multi-Plane Light Conversion (MPLC), with very low intrinsic loss and high mode selectivity. In this first demonstration we show that a typical 3-mode multiplexer achieves a mode selectivity better than −23 dB and a total insertion efficiency of −4.1 dB (optical coating improvements could increase efficiency to −2.4 dB), across the full C-band. Moreover this multiplexer is able to perform any mode conversion, and we demonstrate its performance for the first 6 eigenmodes of a few-mode fiber: LP01, LP11a, LP11b, LP02, LP21a and LP21b.

264 citations

Journal ArticleDOI
20 Jun 2015
TL;DR: In this article, a platform for switching signals between multimode waveguides based on individually processing the spatial mode channels using single-mode elements is presented, which enables individual processing of multimode signals and high-bandwidth, flexible optical networks.
Abstract: Leveraging the spatial modes of multimode waveguides using mode-division multiplexing on an integrated photonic chip allows unprecedented scaling of bandwidth density for on-chip communication. Switching channels between waveguides is critical for future scalable optical networks, but its implementation in multimode waveguides must address how to simultaneously control modes with vastly different optical properties. Here we present a platform for switching signals between multimode waveguides based on individually processing the spatial mode channels using single-mode elements. Using this wavelength-division multiplexing-compatible platform, we demonstrate a 1×2 multimode switch for a silicon chip that routes four data channels with low (<−16.8 dB) crosstalk. We show bit-error rates below 10−9 and power penalties below 1.4 dB on all channels while routing 10 Gb/s data when each channel is input and routed separately. The switch exhibits an additional power penalty of less than 2.4 dB when all four channels are simultaneously routed. These results enable individual processing of multimode signals and high-bandwidth, flexible optical networks.

256 citations

References
More filters
Book
01 Jan 1998
TL;DR: The second edition of Optical Networks: A Practical Perspective succeeds the first as the authoritative source for information on optical networking technologies and techniques as discussed by the authors, covering componentry and transmission in detail but also emphasizing the practical networking issues that affect organizations as they evaluate, deploy, or develop optical solutions.
Abstract: This fully updated and expanded second edition of Optical Networks: A Practical Perspective succeeds the first as the authoritative source for information on optical networking technologies and techniques. Written by two of the field's most respected individuals, it covers componentry and transmission in detail but also emphasizes the practical networking issues that affect organizations as they evaluate, deploy, or develop optical solutions.

2,282 citations

Journal ArticleDOI
10 Jun 2009
TL;DR: The current performance and future demands of interconnects to and on silicon chips are examined and the requirements for optoelectronic and optical devices are project if optics is to solve the major problems of interConnects for future high-performance silicon chips.
Abstract: We examine the current performance and future demands of interconnects to and on silicon chips. We compare electrical and optical interconnects and project the requirements for optoelectronic and optical devices if optics is to solve the major problems of interconnects for future high-performance silicon chips. Optics has potential benefits in interconnect density, energy, and timing. The necessity of low interconnect energy imposes low limits especially on the energy of the optical output devices, with a ~ 10 fJ/bit device energy target emerging. Some optical modulators and radical laser approaches may meet this requirement. Low (e.g., a few femtofarads or less) photodetector capacitance is important. Very compact wavelength splitters are essential for connecting the information to fibers. Dense waveguides are necessary on-chip or on boards for guided wave optical approaches, especially if very high clock rates or dense wavelength-division multiplexing (WDM) is to be avoided. Free-space optics potentially can handle the necessary bandwidths even without fast clocks or WDM. With such technology, however, optics may enable the continued scaling of interconnect capacity required by future chips.

1,959 citations

Journal ArticleDOI
01 Apr 2001
TL;DR: Wires that shorten in length as technologies scale have delays that either track gate delays or grow slowly relative to gate delays, which is good news since these "local" wires dominate chip wiring.
Abstract: Concern about the performance of wires wires in scaled technologies has led to research exploring other communication methods. This paper examines wire and gate delays as technologies migrate from 0.18-/spl mu/m to 0.035-/spl mu/m feature sizes to better understand the magnitude of the the wiring problem. Wires that shorten in length as technologies scale have delays that either track gate delays or grow slowly relative to gate delays. This result is good news since these "local" wires dominate chip wiring. Despite this scaling of local wire performance, computer-aided design (CAD) tools must still become move sophisticated in dealing with these wires. Under scaling, the total number of wires grows exponentially, so CAD tools will need to handle an ever-growing percentage of all the wires in order to keep designer workloads constant. Global wires present a more serious problem to designers. These are wires that do not scale in length since they communicate signals across the chip. The delay of these wives will remain constant if repeaters are used meaning that relative to gate delays, their delays scale upwards. These increased delays for global communication will drive architectures toward modular designs with explicit global latency mechanisms.

1,486 citations

Journal ArticleDOI
TL;DR: Results confirm the unique benefits for future generations of CMPs that can be achieved by bringing optics into the chip in the form of photonic NoCs, as well as a comparative power analysis of a photonic versus an electronic NoC.
Abstract: The design and performance of next-generation chip multiprocessors (CMPs) will be bound by the limited amount of power that can be dissipated on a single die We present photonic networks-on-chip (NoC) as a solution to reduce the impact of intra-chip and off-chip communication on the overall power budget A photonic interconnection network can deliver higher bandwidth and lower latencies with significantly lower power dissipation We explain why on-chip photonic communication has recently become a feasible opportunity and explore the challenges that need to be addressed to realize its implementation We introduce a novel hybrid micro-architecture for NoCs combining a broadband photonic circuit-switched network with an electronic overlay packet-switched control network We address the critical design issues including: topology, routing algorithms, deadlock avoidance, and path-setup/tear-down procedures We present experimental results obtained with POINTS, an event-driven simulator specifically developed to analyze the proposed idea, as well as a comparative power analysis of a photonic versus an electronic NoC Overall, these results confirm the unique benefits for future generations of CMPs that can be achieved by bringing optics into the chip in the form of photonic NoCs

873 citations

Journal ArticleDOI
TL;DR: Two modes have been launched into a conventional 10-m long multimode graded-index optical fiber using spatial filtering techniques and modular multiplexing appears to be possible over short fiber lengths.
Abstract: Two modes have been launched into a conventional 10-m long multimode graded-index optical fiber using spatial filtering techniques. The measured cross talk between the two modes in the baseband is -20 dB at the output end of the fiber. Modal multiplexing thus appears to be possible over short fiber lengths.

434 citations