scispace - formally typeset
Search or ask a question
Book

Asymptotic analysis for periodic structures

TL;DR: In this article, the authors give a systematic introduction of multiple scale methods for partial differential equations, including their original use for rigorous mathematical analysis in elliptic, parabolic, and hyperbolic problems, and with the use of probabilistic methods when appropriate.
Abstract: This is a reprinting of a book originally published in 1978. At that time it was the first book on the subject of homogenization, which is the asymptotic analysis of partial differential equations with rapidly oscillating coefficients, and as such it sets the stage for what problems to consider and what methods to use, including probabilistic methods. At the time the book was written the use of asymptotic expansions with multiple scales was new, especially their use as a theoretical tool, combined with energy methods and the construction of test functions for analysis with weak convergence methods. Before this book, multiple scale methods were primarily used for non-linear oscillation problems in the applied mathematics community, not for analyzing spatial oscillations as in homogenization. In the current printing a number of minor corrections have been made, and the bibliography was significantly expanded to include some of the most important recent references. This book gives systematic introduction of multiple scale methods for partial differential equations, including their original use for rigorous mathematical analysis in elliptic, parabolic, and hyperbolic problems, and with the use of probabilistic methods when appropriate. The book continues to be interesting and useful to readers of different backgrounds, both from pure and applied mathematics, because of its informal style of introducing the multiple scale methodology and the detailed proofs.
Citations
More filters
Journal ArticleDOI
TL;DR: In this article, the authors present a methodology for optimal shape design based on homogenization, which is related to modern production techniques and consists of computing the optimal distribution in space of an anisotropic material that is constructed by introducing an infimum of periodically distributed small holes in a given homogeneous, i.i.
Abstract: Optimal shape design of structural elements based on boundary variations results in final designs that are topologically equivalent to the initial choice of design, and general, stable computational schemes for this approach often require some kind of remeshing of the finite element approximation of the analysis problem. This paper presents a methodology for optimal shape design where both these drawbacks can be avoided. The method is related to modern production techniques and consists of computing the optimal distribution in space of an anisotropic material that is constructed by introducing an infimum of periodically distributed small holes in a given homogeneous, i~otropic material, with the requirement that the resulting structure can carry the given loads as well as satisfy other design requirements. The computation of effective material properties for the anisotropic material is carried out using the method of homogenization. Computational results are presented and compared with results obtained by boundary variations.

5,858 citations

Journal ArticleDOI
TL;DR: In this article, various ways of removing this discrete nature of the problem by the introduction of a density function that is a continuous design variable are described. But none of these methods can be used for shape optimization in a general setting.
Abstract: Shape optimization in a general setting requires the determination of the optimal spatial material distribution for given loads and boundary conditions. Every point in space is thus a material point or a void and the optimization problem is a discrete variable one. This paper describes various ways of removing this discrete nature of the problem by the introduction of a density function that is a continuous design variable. Domains of high density then define the shape of the mechanical element. For intermediate densities, material parameters given by an artificial material law can be used. Alternatively, the density can arise naturally through the introduction of periodically distributed, microscopic voids, so that effective material parameters for intermediate density values can be computed through homogenization. Several examples in two-dimensional elasticity illustrate that these methods allow a determination of the topology of a mechanical element, as required for a boundary variations shape optimization technique.

3,434 citations

MonographDOI
06 May 2002
TL;DR: Some of the greatest scientists including Poisson, Faraday, Maxwell, Rayleigh, and Einstein have contributed to the theory of composite materials Mathematically, it is the study of partial differential equations with rapid oscillations in their coefficients Although extensively studied for more than a hundred years, an explosion of ideas in the last five decades has dramatically increased our understanding of the relationship between the properties of the constituent materials, the underlying microstructure of a composite, and the overall effective moduli which govern the macroscopic behavior as mentioned in this paper.
Abstract: Some of the greatest scientists including Poisson, Faraday, Maxwell, Rayleigh, and Einstein have contributed to the theory of composite materials Mathematically, it is the study of partial differential equations with rapid oscillations in their coefficients Although extensively studied for more than a hundred years, an explosion of ideas in the last five decades (and particularly in the last three decades) has dramatically increased our understanding of the relationship between the properties of the constituent materials, the underlying microstructure of a composite, and the overall effective (electrical, thermal, elastic) moduli which govern the macroscopic behavior This renaissance has been fueled by the technological need for improving our knowledge base of composites, by the advance of the underlying mathematical theory of homogenization, by the discovery of new variational principles, by the recognition of how important the subject is to solving structural optimization problems, and by the realization of the connection with the mathematical problem of quasiconvexification This 2002 book surveys these exciting developments at the frontier of mathematics

2,455 citations

Journal ArticleDOI
TL;DR: In this paper, the convergence of the functional π (x,y) with support in a fixed compact set is studied and a convergence theorem is proved under the weaker assumption that π(x, y) remains in a bounded subset of the set, and the use of multiple scale expansions in homogenization is justified.
Abstract: The convergence, as $\varepsilon \downarrow 0$, of the functional $F_\varepsilon (\Psi ) = \int _{\mathbb{R}^N } u_\varepsilon (x)\Psi (x,{x / \varepsilon })$ associated with a given $L^2 $ function $u_\varepsilon $ with support in a fixed compact set is studied. The test functions $\Psi (x,y)$ are continuous on $\mathbb{R}^N \times \mathbb{R}^N $ and periodic in y. A convergence theorem is proved under the weaker assumption that $u_\varepsilon $ remains in a bounded subset of $L^2 $. Finally, the use of multiple-scale expansions in homogenization is justified, and a new approach is proposed for the mathematical analysis of homogenization problems.

1,422 citations

Journal ArticleDOI
TL;DR: The state-of-the-art of topological design and manufacturing processes of various types of porous metals, in particular for titanium alloys, biodegradable metals and shape memory alloys are reviewed.

1,393 citations

References
More filters
Journal ArticleDOI
TL;DR: In this article, a polynomial Hermitian matrices over the complex number field C are considered and the relative eigenvalue problem is formulated as a linear combination of the repeated eigenvalues of the matrix A(p)x = λEx, x ϵ Cm.

19 citations