scispace - formally typeset
Open AccessBook

Asymptotic Methods for Relaxation Oscillations and Applications

Johan Grasman
Reads0
Chats0
TLDR
In this paper, a mathematical characterization of relaxation oscillators is presented, and a rigorous theory for weakly coupled oscillators with different limit cycles is presented. But the analysis is restricted to the case of the Van der Pol oscillator with a constant forcing term.
Abstract
1. Introduction.- 1.1 The Van der Pol oscillator.- 1.2 Mechanical prototypes of relaxation oscillators.- 1.3 Relaxation oscillations in physics and biology.- 1.4 Discontinuous approximations.- 1.5 Matched asymptotic expansions.- 1.6 Forced oscillations.- 1.7 Mutual entrainment.- 2 Free oscillation.- 2.1 Autonomous relaxation oscillation: definition and existence.- 2.1.1 A mathematical characterization of relaxation oscillations.- 2.1.2 Application of the Poincare-Bendixson theorem.- 2.1.3 Application of the extension theorem.- 2.1.4 Application of Tikhonov's theorem.- 2.1.5 The analytical method of Cartwright.- 2.2 Asymptotic solution of the Van der Pol equation.- 2.2.1 The physical plane.- 2.2.2 The phase plane.- 2.2.3 The Lienard plane.- 2.2.4 Approximations of amplitude and period.- 2.3 The Volterra-Lotka equations.- 2.3.1 Modeling prey-predator systems.- 2.3.2 Oscillations with both state variables having a large amplitude.- 2.3.3 Oscillations with one state variable having a large amplitude.- 2.3.4 The period for large amplitude oscillations by inverse Laplace asymptotics.- 2.4 Chemical oscillations.- 2.4.1 The Brusselator.- 2.4.2 The Belousov-Zhabotinskii reaction and the Oregonator.- 2.5 Bifurcation of the Van der Pol equation with a constant forcing term.- 2.5.1 Modeling nerve excitation the Bonhoeffer-Van der Pol equation.- 2.5.2 Canards.- 2.6 Stochastic and chaotic oscillations.- 2.6.1 Chaotic relaxation oscillations.- 2.6.2 Randomly perturbed oscillations.- 2.6.3 The Van der Pol oscillator with a random forcing term.- 2.6.4 Distinction between chaos and noise.- 3. Forced oscillation and mutual entrainment.- 3.1 Modeling coupled oscillations.- 3.1.1 Oscillations in the applied sciences.- 3.1.2 The system of differential equations and the method of analysis.- 3.2 A rigorous theory for weakly coupled oscillators.- 3.2.1 Validity of the discontinuous approximation.- 3.2.2 Construction of the asymptotic solution.- 3.2.3 Existence of a periodic solution.- 3.2.4 Formal extension to oscillators coupled with delay.- 3.3 Coupling of two oscillators.- 3.3.1 Piece-wise linear oscillators.- 3.3.2 Van der Pol oscillators.- 3.3.3 Entrainment with frequency ratio 1:3.- 3.3.4 Oscillators with different limit cycles.- Modeling biological oscillations.- 3.4.1 Entrainment with frequency ratio n:m.- 3.4.2 A chain of oscillators with decreasing autonomous frequency.- 3.4.3 A large population of coupled oscillators with widely different frequencies.- 3.4.4 A large population of coupled oscillators with frequencies having a Gaussian distribution.- 3.4.5 Periodic structures of coupled oscillators.- 3.4.6 Nonlinear phase diffusion equations.- 4. The Van der Pol oscillator with a sinusoidal forcing term.- 4.1 Qualitative methods of analysis.- 4.1.1 Global behavior and the Poincare mapping.- 4.1.2 The use of symbolic dynamics.- 4.1.3 Some remarks on the annulus mapping.- 4.2 Asymptotic solution of the Van der Pol equation with a moderate forcing term.- 4.2 Asymptotic solution of the Van der Pol equation with a large forcing term.- 4.2.1 Subharmonic solutions.- 4.2.2 Dips slices and chaotic solutions.- 4.3 Asymptotic solution of the Van der Pol equation with a large forcing term.- 4.3.1 Subharmonic solutions.- 4.3.2 Dips and slices.- 4.3.3 Irregular solutions.- Appendices.- A: Asymptotics of some special functions.- B: Asymptotic ordering and expansions.- C: Concepts of the theory of dynamical systems.- D: Stochastic differential equations and diffusion approximations.- Literature.- Author Index.

read more

Citations
More filters
Journal ArticleDOI

Neural excitability, spiking and bursting

TL;DR: The phenomenon of neural bursting is described, and geometric bifurcation theory is used to extend the existing classification of bursters, including many new types, and it is shown that different bursters can interact, synchronize and process information differently.
Journal ArticleDOI

Effects of noise in excitable systems

TL;DR: In this article, the behavior of excitable systems driven by Gaussian white noise is reviewed, focusing mainly on those general properties of such systems that are due to noise, and present several applications of their findings in biophysics and lasers.
Journal ArticleDOI

Extending geometric singular perturbation theory to nonhyperbolic points—fold and canard points in two dimensions ∗

TL;DR: This work presents a method based on blow-up techniques, which leads to a rigorous geometric analysis of the extension of slow manifolds past fold points and canard points in planar systems.
Journal ArticleDOI

Relaxation Oscillation and Canard Explosion

TL;DR: In this paper, a geometric analysis of relaxation oscillations and canard cycles in singularly perturbed planar vector fields is presented. But the analysis is restricted to the case of singular cycles and does not consider the case where the transition from small Hopf-type cycles to large relaxation cycles occurs in an exponentially thin parameter interval.
Journal ArticleDOI

A mathematical framework for critical transitions: Bifurcations, fast–slow systems and stochastic dynamics

TL;DR: In this article, the authors provide an overview of early warning signs for critical transitions in dynamical systems and their application in a wide range of applications from ecosystems and climate change to medicine and finance.
Related Papers (5)