scispace - formally typeset
Search or ask a question
Journal ArticleDOI

Atomic Defects in Two-Dimensional Materials: From Single-Atom Spectroscopy to Functionalities in Opto-/Electronics, Nanomagnetism, and Catalysis

Jinhua Hong1, Chuanhong Jin1, Jun Yuan2, Jun Yuan1, Ze Zhang1 
01 Apr 2017-Advanced Materials (John Wiley & Sons, Ltd)-Vol. 29, Iss: 14, pp 1606434
TL;DR: A review of atomic defects in two-dimensional materials will offer a clear picture of the defect physics involved to demonstrate the local modulation of the electronic properties and possible benefits in potential applications in magnetism and catalysis.
Abstract: Two-dimensional layered graphene-like crystals including transition-metal dichalcogenides (TMDs) have received extensive research interest due to their diverse electronic, valleytronic, and chemical properties, with the corresponding optoelectronics and catalysis application being actively explored. However, the recent surge in two-dimensional materials science is accompanied by equally great challenges, such as defect engineering in large-scale sample synthesis. It is necessary to elucidate the effect of structural defects on the electronic properties in order to develop an application-specific strategy for defect engineering. Here, two aspects of the existing knowledge of native defects in two-dimensional crystals are reviewed. One is the point defects emerging in graphene and hexagonal boron nitride, as probed by atomically resolved electron microscopy, and their local electronic properties, as measured by single-atom electron energy-loss spectroscopy. The other will focus on the point defects in TMDs and their influence on the electronic structure, photoluminescence, and electric transport properties. This review of atomic defects in two-dimensional materials will offer a clear picture of the defect physics involved to demonstrate the local modulation of the electronic properties and possible benefits in potential applications in magnetism and catalysis.
Citations
More filters
Journal ArticleDOI
TL;DR: The fundamental relationships between electronic structure, adsorption energy, and apparent activity for a wide variety of 2D electrocatalysts are described with the goal of providing a better understanding of these emerging nanomaterials at the atomic level.
Abstract: Over the past few decades, the design and development of advanced electrocatalysts for efficient energy conversion technologies have been subjects of extensive study. With the discovery of graphene, two-dimensional (2D) nanomaterials have emerged as some of the most promising candidates for heterogeneous electrocatalysts due to their unique physical, chemical, and electronic properties. Here, we review 2D-nanomaterial-based electrocatalysts for selected electrocatalytic processes. We first discuss the unique advances in 2D electrocatalysts based on different compositions and functions followed by specific design principles. Following this overview, we discuss various 2D electrocatalysts for electrocatalytic processes involved in the water cycle, carbon cycle, and nitrogen cycle from their fundamental conception to their functional application. We place a significant emphasis on different engineering strategies for 2D nanomaterials and the influence these strategies have on intrinsic material performance, ...

1,363 citations

Journal Article
TL;DR: In this paper, the authors used electron beams instead of photons to detect plasmons as resonance peaks in the energy-loss spectra of sub-nanometre electron beams rastered on nanoparticles of well-defined geometrical parameters.
Abstract: Understanding how light interacts with matter at the nanometre scale is a fundamental issue in optoelectronics and nanophotonics. In particular, many applications (such as bio-sensing, cancer therapy and all-optical signal processing) rely on surface-bound optical excitations in metallic nanoparticles. However, so far no experimental technique has been capable of imaging localized optical excitations with sufficient resolution to reveal their dramatic spatial variation over one single nanoparticle. Here, we present a novel method applied on silver nanotriangles, achieving such resolution by recording maps of plasmons in the near-infrared/visible/ultraviolet domain using electron beams instead of photons. This method relies on the detection of plasmons as resonance peaks in the energy-loss spectra of subnanometre electron beams rastered on nanoparticles of well-defined geometrical parameters. This represents a significant improvement in the spatial resolution with which plasmonic modes can be imaged, and provides a powerful tool in the development of nanometre-level optics.

803 citations

Journal Article
TL;DR: In this article, the authors demonstrate first room temperature and ultrabright single photon emission from a color center in two-dimensional multilayer hexagonal boron nitride.
Abstract: We demonstrate first room temperature, and ultrabright single photon emission from a color center in two-dimensional multilayer hexagonal boron nitride. Density Functional Theory calculations indicate that vacancy-related centers are a likely source of the emission.

706 citations

Journal Article
TL;DR: A criterion for the occurrence of interaction-driven quantum Hall effects near intermediate integer values of e2/h due to charge gaps in broken symmetry states is derived.
Abstract: Graphene is a two-dimensional carbon material with a honeycomb lattice and Dirac-like low-energy excitations. When Zeeman and spin-orbit interactions are neglected, its Landau levels are fourfold degenerate, explaining the 4e2/h separation between quantized Hall conductivity values seen in recent experiments. In this Letter we derive a criterion for the occurrence of interaction-driven quantum Hall effects near intermediate integer values of e2/h due to charge gaps in broken symmetry states.

458 citations

Journal ArticleDOI
TL;DR: In this article, the type, regulation strategy, fine defect characterization methods, and their application in the electrocatalytic CO2 reduction reaction (CRR) and N 2 reduction reaction(NRR) are discussed and summarized, and major challenges, opportunities, and future development direction of defect engineering in CRR and NRR catalysts are proposed.
Abstract: The electrocatalytic CO2 reduction reaction (CRR) and N2 reduction reaction (NRR), which convert inert small molecules into high-value products under mild conditions, have received much research attention Defect engineering is an important strategy for modulating the electronic properties of electrocatalysts, which may endow unexpected physical and chemical properties to break the intrinsic bottleneck and, therefore, boost the electrocatalytic performance To date, various defective nanomaterials (such as nanocarbon and transition metal compounds) have been synthesized that display great potential for the CRR and NRR Therefore, a deep understanding of the influence of defects on the catalytic activity is urgently needed In this review, the type, regulation strategy, fine defect characterization methods, and their application in the electrocatalytic CRR and NRR are discussed and summarized Furthermore, the major challenges, opportunities, and future development direction of defect engineering in CRR and NRR catalysts are proposed This review aims to provide a reference for the proof-of-concept design of highly active CRR and NRR electrocatalysts

392 citations

References
More filters
Journal ArticleDOI
22 Oct 2004-Science
TL;DR: Monocrystalline graphitic films are found to be a two-dimensional semimetal with a tiny overlap between valence and conductance bands and they exhibit a strong ambipolar electric field effect.
Abstract: We describe monocrystalline graphitic films, which are a few atoms thick but are nonetheless stable under ambient conditions, metallic, and of remarkably high quality. The films are found to be a two-dimensional semimetal with a tiny overlap between valence and conductance bands, and they exhibit a strong ambipolar electric field effect such that electrons and holes in concentrations up to 10 13 per square centimeter and with room-temperature mobilities of ∼10,000 square centimeters per volt-second can be induced by applying gate voltage.

55,532 citations

Journal ArticleDOI
TL;DR: Owing to its unusual electronic spectrum, graphene has led to the emergence of a new paradigm of 'relativistic' condensed-matter physics, where quantum relativistic phenomena can now be mimicked and tested in table-top experiments.
Abstract: Graphene is a rapidly rising star on the horizon of materials science and condensed-matter physics. This strictly two-dimensional material exhibits exceptionally high crystal and electronic quality, and, despite its short history, has already revealed a cornucopia of new physics and potential applications, which are briefly discussed here. Whereas one can be certain of the realness of applications only when commercial products appear, graphene no longer requires any further proof of its importance in terms of fundamental physics. Owing to its unusual electronic spectrum, graphene has led to the emergence of a new paradigm of 'relativistic' condensed-matter physics, where quantum relativistic phenomena, some of which are unobservable in high-energy physics, can now be mimicked and tested in table-top experiments. More generally, graphene represents a conceptually new class of materials that are only one atom thick, and, on this basis, offers new inroads into low-dimensional physics that has never ceased to surprise and continues to provide a fertile ground for applications.

35,293 citations

Journal ArticleDOI
TL;DR: In this paper, the basic theoretical aspects of graphene, a one-atom-thick allotrope of carbon, with unusual two-dimensional Dirac-like electronic excitations, are discussed.
Abstract: This article reviews the basic theoretical aspects of graphene, a one-atom-thick allotrope of carbon, with unusual two-dimensional Dirac-like electronic excitations. The Dirac electrons can be controlled by application of external electric and magnetic fields, or by altering sample geometry and/or topology. The Dirac electrons behave in unusual ways in tunneling, confinement, and the integer quantum Hall effect. The electronic properties of graphene stacks are discussed and vary with stacking order and number of layers. Edge (surface) states in graphene depend on the edge termination (zigzag or armchair) and affect the physical properties of nanoribbons. Different types of disorder modify the Dirac equation leading to unusual spectroscopic and transport properties. The effects of electron-electron and electron-phonon interactions in single layer and multilayer graphene are also presented.

20,824 citations

Journal ArticleDOI
10 Nov 2005-Nature
TL;DR: This study reports an experimental study of a condensed-matter system (graphene, a single atomic layer of carbon) in which electron transport is essentially governed by Dirac's (relativistic) equation and reveals a variety of unusual phenomena that are characteristic of two-dimensional Dirac fermions.
Abstract: Quantum electrodynamics (resulting from the merger of quantum mechanics and relativity theory) has provided a clear understanding of phenomena ranging from particle physics to cosmology and from astrophysics to quantum chemistry. The ideas underlying quantum electrodynamics also influence the theory of condensed matter, but quantum relativistic effects are usually minute in the known experimental systems that can be described accurately by the non-relativistic Schrodinger equation. Here we report an experimental study of a condensed-matter system (graphene, a single atomic layer of carbon) in which electron transport is essentially governed by Dirac's (relativistic) equation. The charge carriers in graphene mimic relativistic particles with zero rest mass and have an effective 'speed of light' c* approximately 10(6) m s(-1). Our study reveals a variety of unusual phenomena that are characteristic of two-dimensional Dirac fermions. In particular we have observed the following: first, graphene's conductivity never falls below a minimum value corresponding to the quantum unit of conductance, even when concentrations of charge carriers tend to zero; second, the integer quantum Hall effect in graphene is anomalous in that it occurs at half-integer filling factors; and third, the cyclotron mass m(c) of massless carriers in graphene is described by E = m(c)c*2. This two-dimensional system is not only interesting in itself but also allows access to the subtle and rich physics of quantum electrodynamics in a bench-top experiment.

18,958 citations

Journal ArticleDOI
TL;DR: This work shows that graphene's electronic structure is captured in its Raman spectrum that clearly evolves with the number of layers, and allows unambiguous, high-throughput, nondestructive identification of graphene layers, which is critically lacking in this emerging research area.
Abstract: Graphene is the two-dimensional building block for carbon allotropes of every other dimensionality We show that its electronic structure is captured in its Raman spectrum that clearly evolves with the number of layers The D peak second order changes in shape, width, and position for an increasing number of layers, reflecting the change in the electron bands via a double resonant Raman process The G peak slightly down-shifts This allows unambiguous, high-throughput, nondestructive identification of graphene layers, which is critically lacking in this emerging research area

13,474 citations