scispace - formally typeset
Journal ArticleDOI

Atomistic modeling of graphene/hexagonal boron nitride polymer nanocomposites: a review

Reads0
Chats0
TLDR
In this article, different types of interatomic potentials can be used for the modeling of graphene, hexagonal boron nitride (h-BN) and corresponding nanocomposites, and further elaborates on developments and challenges associated with the classical mechanics-based approach along with synergic effects of these nano reinforcements on host polymer matrix.
Abstract
Due to their exceptional properties, graphene and hexagonal boron nitride (h-BN) nanofillers are emerging as potential candidates for reinforcing the polymer-based nanocomposites. Graphene and h-BN have comparable mechanical and thermal properties, whereas due to high band gap in h-BN (~5 eV), have contrasting electrical conductivities. Atomistic modeling techniques are viable alternatives to the costly and time-consuming experimental techniques, and are accurate enough to predict the mechanical properties, fracture toughness, and thermal conductivities of graphene and h-BN-based nanocomposites. Success of any atomistic model entirely depends on the type of interatomic potential used in simulations. This review article encompasses different types of interatomic potentials that can be used for the modeling of graphene, h-BN, and corresponding nanocomposites, and further elaborates on developments and challenges associated with the classical mechanics-based approach along with synergic effects of these nano reinforcements on host polymer matrix. For further resources related to this article, please visit the WIREs website.

read more

Citations
More filters
Journal ArticleDOI

A review on enhancement of mechanical and tribological properties of polymer composites reinforced by carbon nanotubes and graphene sheet: Molecular dynamics simulations

TL;DR: In this article, the application of molecular dynamics simulations on mechanical and tribological properties of polymer composites reinforced by carbon nanotubes and graphene sheet as reinforcements is reviewed. And the capabilities of such simulations on exploring inherent mechanisms on improved tribological and mechanical properties of polymeric composites from atomic views are discussed.
Journal Article

Effect of covalent functionalisation on thermal transport across graphene-polymer interfaces

TL;DR: In this article, the interfacial thermal resistance for polymer composites reinforced by various covalently functionalised graphene was investigated by using molecular dynamics simulations, and the results showed that the covalent functionalization in graphene plays a significant role in reducing the graphene-paraffin interfacial temperature resistance.
References
More filters
Journal ArticleDOI

The rise of graphene

TL;DR: Owing to its unusual electronic spectrum, graphene has led to the emergence of a new paradigm of 'relativistic' condensed-matter physics, where quantum relativistic phenomena can now be mimicked and tested in table-top experiments.
Journal ArticleDOI

Development and testing of a general amber force field.

TL;DR: A general Amber force field for organic molecules is described, designed to be compatible with existing Amber force fields for proteins and nucleic acids, and has parameters for most organic and pharmaceutical molecules that are composed of H, C, N, O, S, P, and halogens.
Journal ArticleDOI

Graphene-based composite materials

TL;DR: The bottom-up chemical approach of tuning the graphene sheet properties provides a path to a broad new class of graphene-based materials and their use in a variety of applications.
Journal ArticleDOI

Ultrastructural Characterization of the Lower Motor System in a Mouse Model of Krabbe Disease.

TL;DR: The data further characterize the ultrastructural analysis of the KD mouse model, and support recent theories of a dying-back mechanism for neuronal degeneration, which is independent of demyelination.
Journal ArticleDOI

A roadmap for graphene

TL;DR: This work reviews recent progress in graphene research and in the development of production methods, and critically analyse the feasibility of various graphene applications.
Related Papers (5)