scispace - formally typeset
Search or ask a question
Journal ArticleDOI

Attentive Contexts for Object Detection

TL;DR: Zhang et al. as discussed by the authors proposed an attention-to-context convolution neural network (AC-CNN) for object detection, which consists of one attention-based global contextualized subnetwork and one multi-scale local contextualized (MLC) subnetwork.
Abstract: Modern deep neural network-based object detection methods typically classify candidate proposals using their interior features. However, global and local surrounding contexts that are believed to be valuable for object detection are not fully exploited by existing methods yet. In this work, we take a step towards understanding what is a robust practice to extract and utilize contextual information to facilitate object detection in practice. Specifically, we consider the following two questions: “how to identify useful global contextual information for detecting a certain object?” and “how to exploit local context surrounding a proposal for better inferring its contents?” We provide preliminary answers to these questions through developing a novel attention to context convolution neural network (AC-CNN)-based object detection model. AC-CNN effectively incorporates global and local contextual information into the region-based CNN (e.g., fast R-CNN and faster R-CNN) detection framework and provides better object detection performance. It consists of one attention-based global contextualized (AGC) subnetwork and one multi-scale local contextualized (MLC) subnetwork. To capture global context, the AGC subnetwork recurrently generates an attention map for an input image to highlight useful global contextual locations, through multiple stacked long short-term memory layers. For capturing surrounding local context, the MLC subnetwork exploits both the inside and outside contextual information of each specific proposal at multiple scales. The global and local context are then fused together for making the final decision for detection. Extensive experiments on PASCAL VOC 2007 and VOC 2012 well demonstrate the superiority of the proposed AC-CNN over well-established baselines.
Citations
More filters
Journal ArticleDOI
TL;DR: A comprehensive survey of the recent achievements in this field brought about by deep learning techniques, covering many aspects of generic object detection: detection frameworks, object feature representation, object proposal generation, context modeling, training strategies, and evaluation metrics.
Abstract: Object detection, one of the most fundamental and challenging problems in computer vision, seeks to locate object instances from a large number of predefined categories in natural images. Deep learning techniques have emerged as a powerful strategy for learning feature representations directly from data and have led to remarkable breakthroughs in the field of generic object detection. Given this period of rapid evolution, the goal of this paper is to provide a comprehensive survey of the recent achievements in this field brought about by deep learning techniques. More than 300 research contributions are included in this survey, covering many aspects of generic object detection: detection frameworks, object feature representation, object proposal generation, context modeling, training strategies, and evaluation metrics. We finish the survey by identifying promising directions for future research.

1,897 citations

Proceedings ArticleDOI
Han Hu1, Jiayuan Gu2, Zheng Zhang1, Jifeng Dai1, Yichen Wei1 
01 Jun 2018
TL;DR: In this article, the authors propose an object relation module to model relations between objects, which is shown effective on improving object recognition and duplicate removal steps in the modern object detection pipeline.
Abstract: Although it is well believed for years that modeling relations between objects would help object recognition, there has not been evidence that the idea is working in the deep learning era. All state-of-the-art object detection systems still rely on recognizing object instances individually, without exploiting their relations during learning. This work proposes an object relation module. It processes a set of objects simultaneously through interaction between their appearance feature and geometry, thus allowing modeling of their relations. It is lightweight and in-place. It does not require additional supervision and is easy to embed in existing networks. It is shown effective on improving object recognition and duplicate removal steps in the modern object detection pipeline. It verifies the efficacy of modeling object relations in CNN based detection. It gives rise to the first fully end-to-end object detector.

944 citations

Posted Content
TL;DR: This paper extensively reviews 400+ papers of object detection in the light of its technical evolution, spanning over a quarter-century's time (from the 1990s to 2019), and makes an in-deep analysis of their challenges as well as technical improvements in recent years.
Abstract: Object detection, as of one the most fundamental and challenging problems in computer vision, has received great attention in recent years. Its development in the past two decades can be regarded as an epitome of computer vision history. If we think of today's object detection as a technical aesthetics under the power of deep learning, then turning back the clock 20 years we would witness the wisdom of cold weapon era. This paper extensively reviews 400+ papers of object detection in the light of its technical evolution, spanning over a quarter-century's time (from the 1990s to 2019). A number of topics have been covered in this paper, including the milestone detectors in history, detection datasets, metrics, fundamental building blocks of the detection system, speed up techniques, and the recent state of the art detection methods. This paper also reviews some important detection applications, such as pedestrian detection, face detection, text detection, etc, and makes an in-deep analysis of their challenges as well as technical improvements in recent years.

802 citations

Journal ArticleDOI
TL;DR: SAF R-CNN as discussed by the authors introduces multiple built-in subnetworks which detect pedestrians with scales from disjoint ranges, and outputs from all of the sub-networks are then adaptively combined to generate the final detection results that are shown to be robust to large variance in instance scales.
Abstract: In this paper, we consider the problem of pedestrian detection in natural scenes. Intuitively, instances of pedestrians with different spatial scales may exhibit dramatically different features. Thus, large variance in instance scales, which results in undesirable large intracategory variance in features, may severely hurt the performance of modern object instance detection methods. We argue that this issue can be substantially alleviated by the divide-and-conquer philosophy. Taking pedestrian detection as an example, we illustrate how we can leverage this philosophy to develop a Scale-Aware Fast R-CNN (SAF R-CNN) framework. The model introduces multiple built-in subnetworks which detect pedestrians with scales from disjoint ranges. Outputs from all of the subnetworks are then adaptively combined to generate the final detection results that are shown to be robust to large variance in instance scales, via a gate function defined over the sizes of object proposals. Extensive evaluations on several challenging pedestrian detection datasets well demonstrate the effectiveness of the proposed SAF R-CNN. Particularly, our method achieves state-of-the-art performance on Caltech [P. Dollar, C. Wojek, B. Schiele, and P. Perona, “Pedestrian detection: An evaluation of the state of the art,” IEEE Trans. Pattern Anal. Mach. Intell. , vol. 34, no. 4, pp. 743–761, Apr. 2012], and obtains competitive results on INRIA [N. Dalal and B. Triggs, “Histograms of oriented gradients for human detection,” in Proc. IEEE Conf. Comput. Vis. Pattern Recognit. , 2005, pp. 886–893], ETH [A. Ess, B. Leibe, and L. V. Gool, “Depth and appearance for mobile scene analysis,” in Proc. Int. Conf. Comput. Vis ., 2007, pp. 1–8], and KITTI [A. Geiger, P. Lenz, and R. Urtasun, “Are we ready for autonomous driving? The KITTI vision benchmark suite,” in Proc. IEEE Conf. Comput. Vis. Pattern Recognit ., 2012, pp. 3354–3361].

716 citations

Proceedings ArticleDOI
18 Jun 2018
TL;DR: Zhang et al. as discussed by the authors proposed a pixel-wise contextual attention network to learn to selectively attend to informative context locations for each pixel, which can generate an attention map in which each attention weight corresponds to the contextual relevance at each context location.
Abstract: Contexts play an important role in the saliency detection task. However, given a context region, not all contextual information is helpful for the final task. In this paper, we propose a novel pixel-wise contextual attention network, i.e., the PiCANet, to learn to selectively attend to informative context locations for each pixel. Specifically, for each pixel, it can generate an attention map in which each attention weight corresponds to the contextual relevance at each context location. An attended contextual feature can then be constructed by selectively aggregating the contextual information. We formulate the proposed PiCANet in both global and local forms to attend to global and local contexts, respectively. Both models are fully differentiable and can be embedded into CNNs for joint training. We also incorporate the proposed models with the U-Net architecture to detect salient objects. Extensive experiments show that the proposed PiCANets can consistently improve saliency detection performance. The global and local PiCANets facilitate learning global contrast and homogeneousness, respectively. As a result, our saliency model can detect salient objects more accurately and uniformly, thus performing favorably against the state-of-the-art methods.

631 citations

References
More filters
Proceedings ArticleDOI
27 Jun 2016
TL;DR: In this article, the authors proposed a residual learning framework to ease the training of networks that are substantially deeper than those used previously, which won the 1st place on the ILSVRC 2015 classification task.
Abstract: Deeper neural networks are more difficult to train. We present a residual learning framework to ease the training of networks that are substantially deeper than those used previously. We explicitly reformulate the layers as learning residual functions with reference to the layer inputs, instead of learning unreferenced functions. We provide comprehensive empirical evidence showing that these residual networks are easier to optimize, and can gain accuracy from considerably increased depth. On the ImageNet dataset we evaluate residual nets with a depth of up to 152 layers—8× deeper than VGG nets [40] but still having lower complexity. An ensemble of these residual nets achieves 3.57% error on the ImageNet test set. This result won the 1st place on the ILSVRC 2015 classification task. We also present analysis on CIFAR-10 with 100 and 1000 layers. The depth of representations is of central importance for many visual recognition tasks. Solely due to our extremely deep representations, we obtain a 28% relative improvement on the COCO object detection dataset. Deep residual nets are foundations of our submissions to ILSVRC & COCO 2015 competitions1, where we also won the 1st places on the tasks of ImageNet detection, ImageNet localization, COCO detection, and COCO segmentation.

123,388 citations

Proceedings Article
03 Dec 2012
TL;DR: The state-of-the-art performance of CNNs was achieved by Deep Convolutional Neural Networks (DCNNs) as discussed by the authors, which consists of five convolutional layers, some of which are followed by max-pooling layers, and three fully-connected layers with a final 1000-way softmax.
Abstract: We trained a large, deep convolutional neural network to classify the 1.2 million high-resolution images in the ImageNet LSVRC-2010 contest into the 1000 different classes. On the test data, we achieved top-1 and top-5 error rates of 37.5% and 17.0% which is considerably better than the previous state-of-the-art. The neural network, which has 60 million parameters and 650,000 neurons, consists of five convolutional layers, some of which are followed by max-pooling layers, and three fully-connected layers with a final 1000-way softmax. To make training faster, we used non-saturating neurons and a very efficient GPU implementation of the convolution operation. To reduce overriding in the fully-connected layers we employed a recently-developed regularization method called "dropout" that proved to be very effective. We also entered a variant of this model in the ILSVRC-2012 competition and achieved a winning top-5 test error rate of 15.3%, compared to 26.2% achieved by the second-best entry.

73,978 citations

Proceedings Article
04 Sep 2014
TL;DR: This work investigates the effect of the convolutional network depth on its accuracy in the large-scale image recognition setting using an architecture with very small convolution filters, which shows that a significant improvement on the prior-art configurations can be achieved by pushing the depth to 16-19 weight layers.
Abstract: In this work we investigate the effect of the convolutional network depth on its accuracy in the large-scale image recognition setting. Our main contribution is a thorough evaluation of networks of increasing depth using an architecture with very small (3x3) convolution filters, which shows that a significant improvement on the prior-art configurations can be achieved by pushing the depth to 16-19 weight layers. These findings were the basis of our ImageNet Challenge 2014 submission, where our team secured the first and the second places in the localisation and classification tracks respectively. We also show that our representations generalise well to other datasets, where they achieve state-of-the-art results. We have made our two best-performing ConvNet models publicly available to facilitate further research on the use of deep visual representations in computer vision.

55,235 citations

Proceedings Article
01 Jan 2015
TL;DR: In this paper, the authors investigated the effect of the convolutional network depth on its accuracy in the large-scale image recognition setting and showed that a significant improvement on the prior-art configurations can be achieved by pushing the depth to 16-19 layers.
Abstract: In this work we investigate the effect of the convolutional network depth on its accuracy in the large-scale image recognition setting. Our main contribution is a thorough evaluation of networks of increasing depth using an architecture with very small (3x3) convolution filters, which shows that a significant improvement on the prior-art configurations can be achieved by pushing the depth to 16-19 weight layers. These findings were the basis of our ImageNet Challenge 2014 submission, where our team secured the first and the second places in the localisation and classification tracks respectively. We also show that our representations generalise well to other datasets, where they achieve state-of-the-art results. We have made our two best-performing ConvNet models publicly available to facilitate further research on the use of deep visual representations in computer vision.

49,914 citations

Proceedings ArticleDOI
Jia Deng1, Wei Dong1, Richard Socher1, Li-Jia Li1, Kai Li1, Li Fei-Fei1 
20 Jun 2009
TL;DR: A new database called “ImageNet” is introduced, a large-scale ontology of images built upon the backbone of the WordNet structure, much larger in scale and diversity and much more accurate than the current image datasets.
Abstract: The explosion of image data on the Internet has the potential to foster more sophisticated and robust models and algorithms to index, retrieve, organize and interact with images and multimedia data. But exactly how such data can be harnessed and organized remains a critical problem. We introduce here a new database called “ImageNet”, a large-scale ontology of images built upon the backbone of the WordNet structure. ImageNet aims to populate the majority of the 80,000 synsets of WordNet with an average of 500-1000 clean and full resolution images. This will result in tens of millions of annotated images organized by the semantic hierarchy of WordNet. This paper offers a detailed analysis of ImageNet in its current state: 12 subtrees with 5247 synsets and 3.2 million images in total. We show that ImageNet is much larger in scale and diversity and much more accurate than the current image datasets. Constructing such a large-scale database is a challenging task. We describe the data collection scheme with Amazon Mechanical Turk. Lastly, we illustrate the usefulness of ImageNet through three simple applications in object recognition, image classification and automatic object clustering. We hope that the scale, accuracy, diversity and hierarchical structure of ImageNet can offer unparalleled opportunities to researchers in the computer vision community and beyond.

49,639 citations