scispace - formally typeset
Search or ask a question
Journal ArticleDOI

Automated digital modeling of existing buildings: A review of visual object recognition methods

01 May 2020-Automation in Construction (Elsevier)-Vol. 113, pp 103131
TL;DR: A summary of the efforts of the past ten years in automating the digital modeling of existing buildings by applying reality capture devices and computer vision algorithms, with a particular focus on object recognition methods.
About: This article is published in Automation in Construction.The article was published on 2020-05-01. It has received 58 citations till now. The article focuses on the topics: Building information modeling & Digitization.
Citations
More filters
Journal ArticleDOI
TL;DR: This research helps establish the state-of-the-art of DT in the civil engineering sector and suggests future DT development by extracting DT research clusters based on the co-occurrence analysis of paper keywords' and the relevant DT constituents.

107 citations

Journal ArticleDOI
TL;DR: A thorough mixed scientometric and state-of-the-art review on the application of terrestrial laser scanners (TLS) in bridge engineering and explore investigations and recommendations of researchers in this area is provided.
Abstract: Over the last decade, particular interest in using state-of-the-art emerging technologies for inspection, assessment, and management of civil infrastructures has remarkably increased. Advanced technologies, such as laser scanners, have become a suitable alternative for labor intensive, expensive, and unsafe traditional inspection and maintenance methods, which encourage the increasing use of this technology in construction industry, especially in bridges. This paper aims to provide a thorough mixed scientometric and state-of-the-art review on the application of terrestrial laser scanners (TLS) in bridge engineering and explore investigations and recommendations of researchers in this area. Following the review, more than 1500 research publications were collected, investigated and analyzed through a two-fold literature search published within the last decade from 2010 to 2020. Research trends, consisting of dominated sub-fields, co-occurrence of keywords, network of researchers and their institutions, along with the interaction of research networks, were quantitatively analyzed. Moreover, based on the collected papers, application of TLS in bridge engineering and asset management was reviewed according to four categories including (1) generation of 3D model, (2) quality inspection, (3) structural assessment, and (4) bridge information modeling (BrIM). Finally, the paper identifies the current research gaps, future directions obtained from the quantitative analysis, and in-depth discussions of the collected papers in this area.

72 citations

Journal ArticleDOI
TL;DR: Classic image processing methods that can capture clues of site scenes with capability of high-level reasoning and inference are revisited by reviewing color, geometry and feature-based diagnostics in project environments.
Abstract: Acquiring photos and videos has become a new norm in construction and building projects. However, imagery data is not utilized effectively due to the shortage of required skillsets in the industry and nonfamiliarity with classic image processing methods. Computer vision research in the context of construction and building has heavily focused on the interface between machine learning, and object tracking and activity recognition. Although positive results have been reported, namely improved productivity, safety and quality, implementations in the industry will not be immediate. Furthermore, algorithms such as convolutional neural networks (CNN), residual neural networks (ResNet) and recurrent neural networks (RNN) usually need to undergo extensive transfer learning in order to capture project-specific information in civil infrastructure engineering. This paper revisits classic image processing methods that can capture clues of site scenes with capability of high-level reasoning and inference. The work contributes to the body of knowledge by reviewing color, geometry and feature-based diagnostics in project environments.

54 citations

Journal ArticleDOI
TL;DR: An approach is presented herein for creating geometric agency within BIMs by exploiting their parametric capabilities, the accuracy of 3D point clouds, and the dexterity of metaheuristics and results are a dynamic BIM capable of updating its geometry to match a3D point cloud.

37 citations

Journal ArticleDOI
TL;DR: It is shown that a deep neural network can semantically segment RGB-D (i.e. color and depth) images into 13 building component classes simultaneously despite the use of a small training dataset with only 1490 object instances.

31 citations

References
More filters
Book
18 Nov 2016
TL;DR: Deep learning as mentioned in this paper is a form of machine learning that enables computers to learn from experience and understand the world in terms of a hierarchy of concepts, and it is used in many applications such as natural language processing, speech recognition, computer vision, online recommendation systems, bioinformatics, and videogames.
Abstract: Deep learning is a form of machine learning that enables computers to learn from experience and understand the world in terms of a hierarchy of concepts. Because the computer gathers knowledge from experience, there is no need for a human computer operator to formally specify all the knowledge that the computer needs. The hierarchy of concepts allows the computer to learn complicated concepts by building them out of simpler ones; a graph of these hierarchies would be many layers deep. This book introduces a broad range of topics in deep learning. The text offers mathematical and conceptual background, covering relevant concepts in linear algebra, probability theory and information theory, numerical computation, and machine learning. It describes deep learning techniques used by practitioners in industry, including deep feedforward networks, regularization, optimization algorithms, convolutional networks, sequence modeling, and practical methodology; and it surveys such applications as natural language processing, speech recognition, computer vision, online recommendation systems, bioinformatics, and videogames. Finally, the book offers research perspectives, covering such theoretical topics as linear factor models, autoencoders, representation learning, structured probabilistic models, Monte Carlo methods, the partition function, approximate inference, and deep generative models. Deep Learning can be used by undergraduate or graduate students planning careers in either industry or research, and by software engineers who want to begin using deep learning in their products or platforms. A website offers supplementary material for both readers and instructors.

38,208 citations

Journal ArticleDOI
TL;DR: The ImageNet Large Scale Visual Recognition Challenge (ILSVRC) as mentioned in this paper is a benchmark in object category classification and detection on hundreds of object categories and millions of images, which has been run annually from 2010 to present, attracting participation from more than fifty institutions.
Abstract: The ImageNet Large Scale Visual Recognition Challenge is a benchmark in object category classification and detection on hundreds of object categories and millions of images. The challenge has been run annually from 2010 to present, attracting participation from more than fifty institutions. This paper describes the creation of this benchmark dataset and the advances in object recognition that have been possible as a result. We discuss the challenges of collecting large-scale ground truth annotation, highlight key breakthroughs in categorical object recognition, provide a detailed analysis of the current state of the field of large-scale image classification and object detection, and compare the state-of-the-art computer vision accuracy with human accuracy. We conclude with lessons learned in the 5 years of the challenge, and propose future directions and improvements.

30,811 citations

Book
01 Jan 1990
TL;DR: The updated new edition of the classic Introduction to Algorithms is intended primarily for use in undergraduate or graduate courses in algorithms or data structures and presents a rich variety of algorithms and covers them in considerable depth while making their design and analysis accessible to all levels of readers.
Abstract: From the Publisher: The updated new edition of the classic Introduction to Algorithms is intended primarily for use in undergraduate or graduate courses in algorithms or data structures. Like the first edition,this text can also be used for self-study by technical professionals since it discusses engineering issues in algorithm design as well as the mathematical aspects. In its new edition,Introduction to Algorithms continues to provide a comprehensive introduction to the modern study of algorithms. The revision has been updated to reflect changes in the years since the book's original publication. New chapters on the role of algorithms in computing and on probabilistic analysis and randomized algorithms have been included. Sections throughout the book have been rewritten for increased clarity,and material has been added wherever a fuller explanation has seemed useful or new information warrants expanded coverage. As in the classic first edition,this new edition of Introduction to Algorithms presents a rich variety of algorithms and covers them in considerable depth while making their design and analysis accessible to all levels of readers. Further,the algorithms are presented in pseudocode to make the book easily accessible to students from all programming language backgrounds. Each chapter presents an algorithm,a design technique,an application area,or a related topic. The chapters are not dependent on one another,so the instructor can organize his or her use of the book in the way that best suits the course's needs. Additionally,the new edition offers a 25% increase over the first edition in the number of problems,giving the book 155 problems and over 900 exercises thatreinforcethe concepts the students are learning.

21,651 citations

01 Jan 2005

19,250 citations

Journal ArticleDOI
TL;DR: The relationship between transfer learning and other related machine learning techniques such as domain adaptation, multitask learning and sample selection bias, as well as covariate shift are discussed.
Abstract: A major assumption in many machine learning and data mining algorithms is that the training and future data must be in the same feature space and have the same distribution. However, in many real-world applications, this assumption may not hold. For example, we sometimes have a classification task in one domain of interest, but we only have sufficient training data in another domain of interest, where the latter data may be in a different feature space or follow a different data distribution. In such cases, knowledge transfer, if done successfully, would greatly improve the performance of learning by avoiding much expensive data-labeling efforts. In recent years, transfer learning has emerged as a new learning framework to address this problem. This survey focuses on categorizing and reviewing the current progress on transfer learning for classification, regression, and clustering problems. In this survey, we discuss the relationship between transfer learning and other related machine learning techniques such as domain adaptation, multitask learning and sample selection bias, as well as covariate shift. We also explore some potential future issues in transfer learning research.

18,616 citations

Trending Questions (1)
What are the most promising visual object recognition methods for automated digital modeling of existing buildings?

The paper does not explicitly mention the most promising visual object recognition methods for automated digital modeling of existing buildings.