scispace - formally typeset
Journal ArticleDOI

Automatic 3D intersubject registration of MR volumetric data in standardized Talairach space

Reads0
Chats0
TLDR
A fully automatic registration method to map volumetric data into stereotaxic space that yields results comparable with those of manually based techniques and therefore does not suffer the drawbacks involved in user intervention.
Abstract
Objective In both diagnostic and research applications, the interpretation of MR images of the human brain is facilitated when different data sets can be compared by visual inspection of equivalent anatomical planes. Quantitative analysis with predefined atlas templates often requires the initial alignment of atlas and image planes. Unfortunately, the axial planes acquired during separate scanning sessions are often different in their relative position and orientation, and these slices are not coplanar with those in the atlas. We have developed a completely automatic method to register a given volumetric data set with Talairach stereotaxic coordinate system. Materials and methods The registration method is based on multi-scale, three-dimensional (3D) cross-correlation with an average (n > 300) MR brain image volume aligned with the Talariach stereotaxic space. Once the data set is re-sampled by the transformation recovered by the algorithm, atlas slices can be directly superimposed on the corresponding slices of the re-sampled volume. the use of such a standardized space also allows the direct comparison, voxel to voxel, of two or more data sets brought into stereotaxic space. Results With use of a two-tailed Student t test for paired samples, there was no significant difference in the transformation parameters recovered by the automatic algorithm when compared with two manual landmark-based methods (p > 0.1 for all parameters except y-scale, where p > 0.05). Using root-mean-square difference between normalized voxel intensities as an unbiased measure of registration, we show that when estimated and averaged over 60 volumetric MR images in standard space, this measure was 30% lower for the automatic technique than the manual method, indicating better registrations. Likewise, the automatic method showed a 57% reduction in standard deviation, implying a more stable technique. The algorithm is able to recover the transformation even when data are missing from the top or bottom of the volume. Conclusion We present a fully automatic registration method to map volumetric data into stereotaxic space that yields results comparable with those of manually based techniques. The method requires no manual identification of points or contours and therefore does not suffer the drawbacks involved in user intervention such as reproducibility and interobserver variability.

read more

Citations
More filters
Journal ArticleDOI

Automated Anatomical Labeling of Activations in SPM Using a Macroscopic Anatomical Parcellation of the MNI MRI Single-Subject Brain

TL;DR: An anatomical parcellation of the spatially normalized single-subject high-resolution T1 volume provided by the Montreal Neurological Institute was performed and it is believed that this tool is an improvement for the macroscopical labeling of activated area compared to labeling assessed using the Talairach atlas brain.
Journal ArticleDOI

AFNI: software for analysis and visualization of functional magnetic resonance neuroimages

TL;DR: A package of computer programs for analysis and visualization of three-dimensional human brain functional magnetic resonance imaging (FMRI) results is described and techniques for automatically generating transformed functional data sets from manually labeled anatomical data sets are described.
Journal ArticleDOI

Cortical surface-based analysis. I. Segmentation and surface reconstruction

TL;DR: A set of automated procedures for obtaining accurate reconstructions of the cortical surface are described, which have been applied to data from more than 100 subjects, requiring little or no manual intervention.
Journal ArticleDOI

Whole brain segmentation: automated labeling of neuroanatomical structures in the human brain.

TL;DR: In this paper, a technique for automatically assigning a neuroanatomical label to each voxel in an MRI volume based on probabilistic information automatically estimated from a manually labeled training set is presented.
Related Papers (5)