scispace - formally typeset
Search or ask a question
Journal ArticleDOI

Automatic Chemical Design Using a Data-Driven Continuous Representation of Molecules

TL;DR: In this article, a deep neural network was trained on hundreds of thousands of existing chemical structures to construct three coupled functions: an encoder, a decoder, and a predictor, which can generate new molecules for efficient exploration and optimization through open-ended spaces of chemical compounds.
Abstract: We report a method to convert discrete representations of molecules to and from a multidimensional continuous representation. This model allows us to generate new molecules for efficient exploration and optimization through open-ended spaces of chemical compounds. A deep neural network was trained on hundreds of thousands of existing chemical structures to construct three coupled functions: an encoder, a decoder, and a predictor. The encoder converts the discrete representation of a molecule into a real-valued continuous vector, and the decoder converts these continuous vectors back to discrete molecular representations. The predictor estimates chemical properties from the latent continuous vector representation of the molecule. Continuous representations of molecules allow us to automatically generate novel chemical structures by performing simple operations in the latent space, such as decoding random vectors, perturbing known chemical structures, or interpolating between molecules. Continuous represent...
Citations
More filters
Journal ArticleDOI
TL;DR: This article provides a comprehensive overview of graph neural networks (GNNs) in data mining and machine learning fields and proposes a new taxonomy to divide the state-of-the-art GNNs into four categories, namely, recurrent GNNS, convolutional GNN’s, graph autoencoders, and spatial–temporal Gnns.
Abstract: Deep learning has revolutionized many machine learning tasks in recent years, ranging from image classification and video processing to speech recognition and natural language understanding. The data in these tasks are typically represented in the Euclidean space. However, there is an increasing number of applications, where data are generated from non-Euclidean domains and are represented as graphs with complex relationships and interdependency between objects. The complexity of graph data has imposed significant challenges on the existing machine learning algorithms. Recently, many studies on extending deep learning approaches for graph data have emerged. In this article, we provide a comprehensive overview of graph neural networks (GNNs) in data mining and machine learning fields. We propose a new taxonomy to divide the state-of-the-art GNNs into four categories, namely, recurrent GNNs, convolutional GNNs, graph autoencoders, and spatial–temporal GNNs. We further discuss the applications of GNNs across various domains and summarize the open-source codes, benchmark data sets, and model evaluation of GNNs. Finally, we propose potential research directions in this rapidly growing field.

4,584 citations

Journal ArticleDOI
27 Jul 2018-Science
TL;DR: Methods for achieving inverse design, which aims to discover tailored materials from the starting point of a particular desired functionality, are reviewed.
Abstract: The discovery of new materials can bring enormous societal and technological progress. In this context, exploring completely the large space of potential materials is computationally intractable. Here, we review methods for achieving inverse design, which aims to discover tailored materials from the starting point of a particular desired functionality. Recent advances from the rapidly growing field of artificial intelligence, mostly from the subfield of machine learning, have resulted in a fertile exchange of ideas, where approaches to inverse molecular design are being proposed and employed at a rapid pace. Among these, deep generative models have been applied to numerous classes of materials: rational design of prospective drugs, synthetic routes to organic compounds, and optimization of photovoltaics and redox flow batteries, as well as a variety of other solid-state materials.

1,090 citations

Journal ArticleDOI
TL;DR: This work provides an introduction to variational autoencoders and some important extensions, which provide a principled framework for learning deep latent-variable models and corresponding inference models.
Abstract: Variational autoencoders provide a principled framework for learning deep latent-variable models and corresponding inference models. In this work, we provide an introduction to variational autoencoders and some important extensions.

1,089 citations

Journal ArticleDOI
TL;DR: The ReLeaSE method is used to design chemical libraries with a bias toward structural complexity or toward compounds with maximal, minimal, or specific range of physical properties, such as melting point or hydrophobicity.
Abstract: We have devised and implemented a novel computational strategy for de novo design of molecules with desired properties termed ReLeaSE (Reinforcement Learning for Structural Evolution). On the basis of deep and reinforcement learning (RL) approaches, ReLeaSE integrates two deep neural networks—generative and predictive—that are trained separately but are used jointly to generate novel targeted chemical libraries. ReLeaSE uses simple representation of molecules by their simplified molecular-input line-entry system (SMILES) strings only. Generative models are trained with a stack-augmented memory network to produce chemically feasible SMILES strings, and predictive models are derived to forecast the desired properties of the de novo–generated compounds. In the first phase of the method, generative and predictive models are trained separately with a supervised learning algorithm. In the second phase, both models are trained jointly with the RL approach to bias the generation of new chemical structures toward those with the desired physical and/or biological properties. In the proof-of-concept study, we have used the ReLeaSE method to design chemical libraries with a bias toward structural complexity or toward compounds with maximal, minimal, or specific range of physical properties, such as melting point or hydrophobicity, or toward compounds with inhibitory activity against Janus protein kinase 2. The approach proposed herein can find a general use for generating targeted chemical libraries of novel compounds optimized for either a single desired property or multiple properties.

792 citations

Journal ArticleDOI
TL;DR: A machine learning model allows the identification of new small-molecule kinase inhibitors in days and is used to discover potent inhibitors of discoidin domain receptor 1 (DDR1), a kinase target implicated in fibrosis and other diseases, in 21 days.
Abstract: We have developed a deep generative model, generative tensorial reinforcement learning (GENTRL), for de novo small-molecule design. GENTRL optimizes synthetic feasibility, novelty, and biological activity. We used GENTRL to discover potent inhibitors of discoidin domain receptor 1 (DDR1), a kinase target implicated in fibrosis and other diseases, in 21 days. Four compounds were active in biochemical assays, and two were validated in cell-based assays. One lead candidate was tested and demonstrated favorable pharmacokinetics in mice.

663 citations

References
More filters
Posted Content
TL;DR: This work introduces a class of CNNs called deep convolutional generative adversarial networks (DCGANs), that have certain architectural constraints, and demonstrates that they are a strong candidate for unsupervised learning.
Abstract: In recent years, supervised learning with convolutional networks (CNNs) has seen huge adoption in computer vision applications. Comparatively, unsupervised learning with CNNs has received less attention. In this work we hope to help bridge the gap between the success of CNNs for supervised learning and unsupervised learning. We introduce a class of CNNs called deep convolutional generative adversarial networks (DCGANs), that have certain architectural constraints, and demonstrate that they are a strong candidate for unsupervised learning. Training on various image datasets, we show convincing evidence that our deep convolutional adversarial pair learns a hierarchy of representations from object parts to scenes in both the generator and discriminator. Additionally, we use the learned features for novel tasks - demonstrating their applicability as general image representations.

6,759 citations

Journal ArticleDOI
TL;DR: This chapter discusses the construction of Benzenoid and Coronoid Hydrocarbons through the stages of enumeration, classification, and topological properties in a number of computers used for this purpose.
Abstract: (1) Klamer, A. D. “Some Results Concerning Polyominoes”. Fibonacci Q. 1965, 3(1), 9-20. (2) Golomb, S. W. Polyominoes·, Scribner, New York, 1965. (3) Harary, F.; Read, R. C. “The Enumeration of Tree-like Polyhexes”. Proc. Edinburgh Math. Soc. 1970, 17, 1-14. (4) Lunnon, W. F. “Counting Polyominoes” in Computers in Number Theory·, Academic: London, 1971; pp 347-372. (5) Lunnon, W. F. “Counting Hexagonal and Triangular Polyominoes”. Graph Theory Comput. 1972, 87-100. (6) Brunvoll, J.; Cyvin, S. J.; Cyvin, B. N. “Enumeration and Classification of Benzenoid Hydrocarbons”. J. Comput. Chem. 1987, 8, 189-197. (7) Balaban, A. T., et al. “Enumeration of Benzenoid and Coronoid Hydrocarbons”. Z. Naturforsch., A: Phys., Phys. Chem., Kosmophys. 1987, 42A, 863-870. (8) Gutman, I. “Topological Properties of Benzenoid Systems”. Bull. Soc. Chim., Beograd 1982, 47, 453-471. (9) Gutman, I.; Polansky, O. E. Mathematical Concepts in Organic Chemistry·, Springer: Berlin, 1986. (10) To3i6, R.; Doroslovacki, R.; Gutman, I. “Topological Properties of Benzenoid Systems—The Boundary Code”. MATCH 1986, No. 19, 219-228. (11) Doroslovacki, R.; ToSic, R. “A Characterization of Hexagonal Systems”. Rev. Res. Fac. Sci.-Univ. Novi Sad, Math. Ser. 1984,14(2) 201-209. (12) Knop, J. V.; Szymanski, K.; Trinajstic, N. “Computer Enumeration of Substituted Polyhexes”. Comput. Chem. 1984, 8(2), 107-115. (13) Stojmenovic, L; Tosió, R.; Doroslovaóki, R. “Generating and Counting Hexagonal Systems”. Proc. Yugosl. Semin. Graph Theory, 6th, Dubrovnik 1985; pp 189-198. (14) Doroslovaóki, R.; Stojmenovió, I.; Tosió, R. “Generating and Counting Triangular Systems”. BIT 1987, 27, 18-24. (15) Knop, J. V.; Miller, W. R.; Szymanski, K.; Trinajstic, N. Computer Generation of Certain Classes of Molecules·, Association of Chemists and Technologists of Croatia: Zagreb, 1985.

4,541 citations

Journal ArticleDOI
TL;DR: The exact form of a gradient-following learning algorithm for completely recurrent networks running in continually sampled time is derived and used as the basis for practical algorithms for temporal supervised learning tasks.
Abstract: The exact form of a gradient-following learning algorithm for completely recurrent networks running in continually sampled time is derived and used as the basis for practical algorithms for temporal supervised learning tasks. These algorithms have (1) the advantage that they do not require a precisely defined training interval, operating while the network runs; and (2) the disadvantage that they require nonlocal communication in the network being trained and are computationally expensive. These algorithms allow networks having recurrent connections to learn complex tasks that require the retention of information over time periods having either fixed or indefinite length.

4,351 citations

Journal ArticleDOI
TL;DR: A description of their implementation has not previously been presented in the literature, and ECFPs can be very rapidly calculated and can represent an essentially infinite number of different molecular features.
Abstract: Extended-connectivity fingerprints (ECFPs) are a novel class of topological fingerprints for molecular characterization. Historically, topological fingerprints were developed for substructure and similarity searching. ECFPs were developed specifically for structure−activity modeling. ECFPs are circular fingerprints with a number of useful qualities: they can be very rapidly calculated; they are not predefined and can represent an essentially infinite number of different molecular features (including stereochemical information); their features represent the presence of particular substructures, allowing easier interpretation of analysis results; and the ECFP algorithm can be tailored to generate different types of circular fingerprints, optimized for different uses. While the use of ECFPs has been widely adopted and validated, a description of their implementation has not previously been presented in the literature.

4,173 citations

Posted Content
TL;DR: This paper proposed WaveNet, a deep neural network for generating audio waveforms, which is fully probabilistic and autoregressive, with the predictive distribution for each audio sample conditioned on all previous ones.
Abstract: This paper introduces WaveNet, a deep neural network for generating raw audio waveforms. The model is fully probabilistic and autoregressive, with the predictive distribution for each audio sample conditioned on all previous ones; nonetheless we show that it can be efficiently trained on data with tens of thousands of samples per second of audio. When applied to text-to-speech, it yields state-of-the-art performance, with human listeners rating it as significantly more natural sounding than the best parametric and concatenative systems for both English and Mandarin. A single WaveNet can capture the characteristics of many different speakers with equal fidelity, and can switch between them by conditioning on the speaker identity. When trained to model music, we find that it generates novel and often highly realistic musical fragments. We also show that it can be employed as a discriminative model, returning promising results for phoneme recognition.

4,002 citations