scispace - formally typeset
Search or ask a question
Journal ArticleDOI

Automatic reconstruction of as-built building information models from laser-scanned point clouds: A review of related techniques

TL;DR: This article surveys techniques developed in civil engineering and computer science that can be utilized to automate the process of creating as-built BIMs and outlines the main methods used by these algorithms for representing knowledge about shape, identity, and relationships.
About: This article is published in Automation in Construction.The article was published on 2010-11-01. It has received 789 citations till now. The article focuses on the topics: Information model & Computer Aided Design.
Citations
More filters
Journal ArticleDOI
TL;DR: The proposed method for generating as-built BIMs from laser-scan data obtained during the construction phase, particularly during ongoing structural works, consists of three steps: region-of-interest detection, scene segmentation, and volumetric representation.

39 citations

Proceedings ArticleDOI
17 Jun 2014
TL;DR: In this article, a Virtual Facility Energy Assessment (VFEA) strategic planning tool is proposed built upon the robust integration of Geographic Information Systems (GIS) and Building Information Modeling (BIM) with a cloud infrastructure.
Abstract: Assembly Bill 758 (AB758) of California Energy Commission (CEC) incentivizes radical improvement of energy performance in existing buildings. Execution of AB758 relies heavily on building performance data and energy assessment. Traditionally, building performance data are not available for public consumption, while energy assessment is complex and time-consuming to conduct. Thus, a Virtual Facility Energy Assessment (VFEA) strategic planning tool is proposed built upon the robust integration of Geographic Information Systems (GIS) and Building Information Modeling (BIM) with a cloud infrastructure. For owners with large portfolios of facilities, such as the California State University (CSU) system, VFEA can leverage location-based building information, dynamic simulation capacity of BIM and wireless sensor network (WSN) for real-time building energy performance detection, visualization, analysis and optimization across campuses. It provides stakeholders a dynamic and holistic virtual assessment for energy performance of buildings that are geographically dispersed. VFEA offers conceptual yet informative suggestions in the decision-making process directed to meet the AB758 requirements. This paper conducted the feasibility analysis, established the system framework of VFEA, and discussed the use case of CSU, Fresno campus for VFEA implementation.

39 citations


Cites background from "Automatic reconstruction of as-buil..."

  • ...Recent advancement in 3D laser-scan technology and research in automatic reconstruction of asbuilt BIM from laser-scanned point clouds (Tang et al 2010, Volk et al 2014) suggest that cost-effective solutions to this concern are promising....

    [...]

Proceedings ArticleDOI
01 Oct 2013
TL;DR: In this article, the authors examine how point clouds collected during high definition surveys can be processed with accuracy in a BIM environment, highlighting critical aspects and advantages deriving from the application of parametric techniques to the real world domain representation.
Abstract: Building Information Modeling is considered by the scientific literature as an emerging trend in the architectural documentation scenario, as it is basically a digital representation of physical and functional features of facilities, serving as a shared knowledge resource during their whole life cycle. BIM is actually a process (not a software, as someone indicated), in which different players act sharing data through digital models in a coordinated, consistent and always up to date workflow, in order to reach reliability and higher quality all over the construction process. This way BIM tools were originally meant to ease the design of new architectures, generated by parametric geometries connected through hierarchical relationships of “smart objects” (components self-aware of their identity and conscious of their interactions with each other). However, this approach can also be successfully applied to what already exists: TLS (Terrestrial Laser Scanning) or digital photogrammetry are supposed to be the first abstraction step in a methodology proposal intended as a scientific strategy in which BIM, relying on its own semantic splitting attitude and its topological structure, is explicitly used in representation of existing buildings belonging to the Cultural Heritage. Presenting some progresses in the development of a specific free Autodesk Revit plug-in, nicknamed GreenSpider after its capability to layout points in the digital domain as if they were nodes of an ideal cobweb, this paper examines how point clouds collected during high definition surveys can be processed with accuracy in a BIM environment, highlighting critical aspects and advantages deriving from the application of parametric techniques to the real world domain representation.

39 citations

Proceedings ArticleDOI
03 Dec 2012
TL;DR: The aim of this paper is to identify elements that can contribute to elaborate a proper methodology for 3D content model generation: the availability of advanced surveying technologies can have a great potential in generating knowledge, especially if integrated by historical documentation on the ancient constructive technologies.
Abstract: The aim of this paper is to identify elements that can contribute to elaborate a proper methodology for 3D content model generation: the availability of advanced surveying technologies (Terrestrial Laser Scanner, Photogrammetry, Multispectral data integration) can have a great potential in generating knowledge, especially if integrated by historical documentation on the ancient constructive technologies. In this sense the use of technological-constructive analysis could better orient 3D Informative Object reconstruction. Such approach has been here applied to the vault structures: the main contribution was the investigation of maintenance analysis and of structural stability, supporting the comprehension of the behaviour of architectural elements within the overall framework of the artefact. The logic of Building Information Models (BIM) approach, such as Object Content Model, has opened interesting scenarios to be investigated for the future, and that could become more useful for the sites' monitoring and for the life cycle management within planned conservation processes.

39 citations

Journal ArticleDOI
TL;DR: The results show the robustness of the methodology to the presence of clutter and partial occlusion, typical in building indoors, even though false positives can be obtained if other elements with the same shape and size as columns are present in the raster.
Abstract: Over the past few years, there has been an increasing need for tools that automate the processing of as-built 3D laser scanner data. Given that a fast and active dimensional analysis of constructive components is essential for construction monitoring, this paper is particularly focused on the detection and segmentation of columns in building interiors from incomplete point clouds acquired with a Terrestrial Laser Scanner. The methodology addresses two types of columns: round cross-section and rectangular cross-section. Considering columns as vertical elements, the global strategy for segmentation involves the rasterization of a point cloud onto the XY plane and the implementation of a model-driven approach based on the Hough Transform. The methodology is tested in two real case studies, and experiments are carried out under different levels of data completeness. The results show the robustness of the methodology to the presence of clutter and partial occlusion, typical in building indoors, even though false positives can be obtained if other elements with the same shape and size as columns are present in the raster.

39 citations

References
More filters
Journal ArticleDOI
TL;DR: New results are derived on the minimum number of landmarks needed to obtain a solution, and algorithms are presented for computing these minimum-landmark solutions in closed form that provide the basis for an automatic system that can solve the Location Determination Problem under difficult viewing.
Abstract: A new paradigm, Random Sample Consensus (RANSAC), for fitting a model to experimental data is introduced. RANSAC is capable of interpreting/smoothing data containing a significant percentage of gross errors, and is thus ideally suited for applications in automated image analysis where interpretation is based on the data provided by error-prone feature detectors. A major portion of this paper describes the application of RANSAC to the Location Determination Problem (LDP): Given an image depicting a set of landmarks with known locations, determine that point in space from which the image was obtained. In response to a RANSAC requirement, new results are derived on the minimum number of landmarks needed to obtain a solution, and algorithms are presented for computing these minimum-landmark solutions in closed form. These results provide the basis for an automatic system that can solve the LDP under difficult viewing

23,396 citations

Journal ArticleDOI
TL;DR: This paper has designed a stand-alone, flexible C++ implementation that enables the evaluation of individual components and that can easily be extended to include new algorithms.
Abstract: Stereo matching is one of the most active research areas in computer vision. While a large number of algorithms for stereo correspondence have been developed, relatively little work has been done on characterizing their performance. In this paper, we present a taxonomy of dense, two-frame stereo methods designed to assess the different components and design decisions made in individual stereo algorithms. Using this taxonomy, we compare existing stereo methods and present experiments evaluating the performance of many different variants. In order to establish a common software platform and a collection of data sets for easy evaluation, we have designed a stand-alone, flexible C++ implementation that enables the evaluation of individual components and that can be easily extended to include new algorithms. We have also produced several new multiframe stereo data sets with ground truth, and are making both the code and data sets available on the Web.

7,458 citations


"Automatic reconstruction of as-buil..." refers background in this paper

  • ...In other fields, such as computer vision, standard test sets and performance metrics have been established [72,83], but no standard evaluation metrics have been established for as-built BIM creation as yet....

    [...]

Journal ArticleDOI
TL;DR: Recognition-by-components (RBC) provides a principled account of the heretofore undecided relation between the classic principles of perceptual organization and pattern recognition.
Abstract: The perceptual recognition of objects is conceptualized to be a process in which the image of the input is segmented at regions of deep concavity into an arrangement of simple geometric components, such as blocks, cylinders, wedges, and cones. The fundamental assumption of the proposed theory, recognition-by-components (RBC), is that a modest set of generalized-cone components, called geons (N £ 36), can be derived from contrasts of five readily detectable properties of edges in a two-dimensiona l image: curvature, collinearity, symmetry, parallelism, and cotermination. The detection of these properties is generally invariant over viewing position an$ image quality and consequently allows robust object perception when the image is projected from a novel viewpoint or is degraded. RBC thus provides a principled account of the heretofore undecided relation between the classic principles of perceptual organization and pattern recognition: The constraints toward regularization (Pragnanz) characterize not the complete object but the object's components. Representational power derives from an allowance of free combinations of the geons. A Principle of Componential Recovery can account for the major phenomena of object recognition: If an arrangement of two or three geons can be recovered from the input, objects can be quickly recognized even when they are occluded, novel, rotated in depth, or extensively degraded. The results from experiments on the perception of briefly presented pictures by human observers provide empirical support for the theory. Any single object can project an infinity of image configurations to the retina. The orientation of the object to the viewer can vary continuously, each giving rise to a different two-dimensional projection. The object can be occluded by other objects or texture fields, as when viewed behind foliage. The object need not be presented as a full-colored textured image but instead can be a simplified line drawing. Moreover, the object can even be missing some of its parts or be a novel exemplar of its particular category. But it is only with rare exceptions that an image fails to be rapidly and readily classified, either as an instance of a familiar object category or as an instance that cannot be so classified (itself a form of classification).

5,464 citations


"Automatic reconstruction of as-buil..." refers background in this paper

  • ...Various researchers have proposed candidate sets of primitives, such as geons [9], superquadrics [3], and generalized cylinders [10]....

    [...]

Journal ArticleDOI
TL;DR: Two of the most critical requirements in support of producing reliable face-recognition systems are a large database of facial images and a testing procedure to evaluate systems.
Abstract: Two of the most critical requirements in support of producing reliable face-recognition systems are a large database of facial images and a testing procedure to evaluate systems. The Face Recognition Technology (FERET) program has addressed both issues through the FERET database of facial images and the establishment of the FERET tests. To date, 14,126 images from 1,199 individuals are included in the FERET database, which is divided into development and sequestered portions of the database. In September 1996, the FERET program administered the third in a series of FERET face-recognition tests. The primary objectives of the third test were to 1) assess the state of the art, 2) identify future areas of research, and 3) measure algorithm performance.

4,816 citations

Proceedings ArticleDOI
01 Aug 1996
TL;DR: This paper presents a volumetric method for integrating range images that is able to integrate a large number of range images yielding seamless, high-detail models of up to 2.6 million triangles.
Abstract: A number of techniques have been developed for reconstructing surfaces by integrating groups of aligned range images. A desirable set of properties for such algorithms includes: incremental updating, representation of directional uncertainty, the ability to fill gaps in the reconstruction, and robustness in the presence of outliers. Prior algorithms possess subsets of these properties. In this paper, we present a volumetric method for integrating range images that possesses all of these properties. Our volumetric representation consists of a cumulative weighted signed distance function. Working with one range image at a time, we first scan-convert it to a distance function, then combine this with the data already acquired using a simple additive scheme. To achieve space efficiency, we employ a run-length encoding of the volume. To achieve time efficiency, we resample the range image to align with the voxel grid and traverse the range and voxel scanlines synchronously. We generate the final manifold by extracting an isosurface from the volumetric grid. We show that under certain assumptions, this isosurface is optimal in the least squares sense. To fill gaps in the model, we tessellate over the boundaries between regions seen to be empty and regions never observed. Using this method, we are able to integrate a large number of range images (as many as 70) yielding seamless, high-detail models of up to 2.6 million triangles.

3,282 citations


"Automatic reconstruction of as-buil..." refers background in this paper

  • ...Non-parametric geometricmodeling reconstructs a surface, typically in the formof a triangle mesh [41], or a volume [18]....

    [...]