scispace - formally typeset
Search or ask a question
Journal ArticleDOI

Automatic reconstruction of as-built building information models from laser-scanned point clouds: A review of related techniques

TL;DR: This article surveys techniques developed in civil engineering and computer science that can be utilized to automate the process of creating as-built BIMs and outlines the main methods used by these algorithms for representing knowledge about shape, identity, and relationships.
About: This article is published in Automation in Construction.The article was published on 2010-11-01. It has received 789 citations till now. The article focuses on the topics: Information model & Computer Aided Design.
Citations
More filters
Journal ArticleDOI
TL;DR: In this article, the integration of a 3D point cloud into hyperspectral images is discussed, and an example of the use of a new integration technique is presented, applied for the first time in the context of buildings.
Abstract: Building information modelling (BIM) is a digital representation of the physical and functional characteristics of a building. Its use offers a range of benefits in terms of achieving the efficient design, construction, operation and maintenance of buildings. Applying BIM at the outset of a new build project should be relatively easy. However, it is often problematic to apply BIM techniques to an existing building, for example, as part of a refurbishment project or as a tool supporting the facilities management strategy, because of inadequacies in the previous management of the dataset that characterises the facility in question. These inadequacies may include information on as built geometry and materials of construction. By the application of automated retrospective data gathering for use in BIM, such problems should be largely overcome and significant benefits in terms of efficiency gains and cost savings should be achieved.,Laser scanning can be used to collect geometrical and spatial information in the form of a 3D point cloud, and this technique is already used. However, as a point cloud representation does not contain any semantic information or geometrical context, such point cloud data must refer to external sources of data, such as building specification and construction materials, to be in used in BIM.,Hyperspectral imaging techniques can be applied to provide both spectral and spatial information of scenes as a set of high-resolution images. Integrating of a 3D point cloud into hyperspectral images would enable accurate identification and classification of surface materials and would also convert the 3D representation to BIM.,This integrated approach has been applied in other areas, for example, in crop management. The transfer of this approach to facilities management and construction would improve the efficiency and automation of the data transition from building pathology to BIM. In this study, the technological feasibility and advantages of the integration of laser scanning and hyperspectral imaging (the latter not having previously been used in the construction context in its own right) is discussed, and an example of the use of a new integration technique is presented, applied for the first time in the context of buildings.

12 citations

Journal ArticleDOI
TL;DR: A mathematical prediction model is presented that provides an indication of the data accuracy given the project dimensions to enable surveyors to make informed discussions about the employability of terrestrial laser scanning without additional control in mid to large-scale projects.
Abstract: . With the increasing popularity of as-built building models for the architectural, engineering and construction (AEC) industry, the demand for highly accurate and dense point cloud data is rising. The current data acquisition methods are labour intensive and time consuming. In order to compete with indoor mobile mapping systems (IMMS), surveyors are now opting to use terrestrial laser scanning as a standalone solution. However, there is uncertainty about the accuracy of this approach. The emphasis of this paper is to determine the scope for which terrestrial laser scanners can be used without additional control. Multiple real life test cases are evaluated in order to identify the boundaries of this technique. Furthermore, this research presents a mathematical prediction model that provides an indication of the data accuracy given the project dimensions. This will enable surveyors to make informed discussions about the employability of terrestrial laser scanning without additional control in mid to large-scale projects.

12 citations


Cites result from "Automatic reconstruction of as-buil..."

  • ...Other LIght Detection And Ranging (LIDAR) integrated approaches have similar results (Tang et al., 2010)....

    [...]

Journal ArticleDOI
TL;DR: This work proposes a visualization system that integrates monitoring information systems, three-dimensional digital field models, interactive computer graphics, and visualization techniques for the visualization of monitoring data along with field models that enables users to interpret monitoring data effectively and intuitively.

11 citations

Journal ArticleDOI
17 Oct 2019-Sensors
TL;DR: This work proposes using unmanned aerial vehicle (UAVs) for automated creation of images and point cloud data of particular construction objects, and extracts locations of objects that require inspection from Four Dimensional Building Information Modelling (4D-BIM).
Abstract: Planning and scheduling in construction heavily depend on current information about the state of construction processes. However, the acquisition process for visual data requires human personnel to take photographs of construction objects. We propose using unmanned aerial vehicle (UAVs) for automated creation of images and point cloud data of particular construction objects. The method extracts locations of objects that require inspection from Four Dimensional Building Information Modelling (4D-BIM). With this information at hand viable flight missions around the known structures of the construction site are computed. During flight, the UAV uses stereo cameras to detect and avoid any obstacles that are not known to the model, for example moving humans or machinery. The combination of pre-computed waypoint missions and reactive avoidance ensures deterministic routing from takeoff to landing and operational safety for humans and machines. During flight, an additional software component compares the captured point cloud data with the model data, enabling automatic per-object completion checking or reconstruction. The prototype is developed in the Robot Operating System (ROS) and evaluated in Software-In-The-Loop (SITL) simulations for the sake of being executable on real UAVs.

11 citations


Cites background from "Automatic reconstruction of as-buil..."

  • ...Furthermore, reconstruction of objects with surfaces oriented in multiple directions requires multiple scans which introduces registration tasks for each scan [16]....

    [...]

  • ...As-built data and reconstructed 3D geometry in general are valuable assets, which are used for progress tracking [1,3,10], structural health monitoring [11,12], quality assessment [13–15] and as-built modelling [16]....

    [...]

  • ...Setup and operation of TLS-based inspections are time-consuming and cause interferences with other construction tasks [16]....

    [...]

Journal ArticleDOI
TL;DR: The proposed method was used to establish the HBIM model of Yingxian Wood Pagoda, which is the oldest and tallest AWA structure in China with a height of 65.88 m and will provide an essential reference for the conservation of wooden architectural heritage structures.
Abstract: Building-information-modeling for cultural heritage (HBIM), which is established using surveying data, can be used to conserve architectural heritage. The development of an HBIM model for ancient wooden architecture (AWA) structures requires interdisciplinary integration. A parametric model for the main components that intelligently integrates the historical knowledge, as well as an intelligent modeling method for these components, are two critical issues required to bridge the existing gap and improve the application of HBIM. Taking an AWA structure constructed during the Liao and Song Dynasties as an example, the parametric model for the typical components, with emphasis on commonality and characteristics, were first proposed. Subsequently, an intelligent automated modeling method was developed and programmed using Dynamo, which can intelligently identify the component type and determine the invisible dimensions. A complicated dou-gong was successfully established with surveying data using the proposed method within five minutes, thereby validating the reliability and efficiency of this method. Furthermore, the proposed method was used to establish the HBIM model of Yingxian Wood Pagoda, which is the oldest and tallest AWA structure in China with a height of 65.88 m. The research findings will provide an essential reference for the conservation of wooden architectural heritage structures.

11 citations


Cites background from "Automatic reconstruction of as-buil..."

  • ...The current trend in practice is the use of advanced automation technology [6,7,15,18,29]....

    [...]

References
More filters
Journal ArticleDOI
TL;DR: New results are derived on the minimum number of landmarks needed to obtain a solution, and algorithms are presented for computing these minimum-landmark solutions in closed form that provide the basis for an automatic system that can solve the Location Determination Problem under difficult viewing.
Abstract: A new paradigm, Random Sample Consensus (RANSAC), for fitting a model to experimental data is introduced. RANSAC is capable of interpreting/smoothing data containing a significant percentage of gross errors, and is thus ideally suited for applications in automated image analysis where interpretation is based on the data provided by error-prone feature detectors. A major portion of this paper describes the application of RANSAC to the Location Determination Problem (LDP): Given an image depicting a set of landmarks with known locations, determine that point in space from which the image was obtained. In response to a RANSAC requirement, new results are derived on the minimum number of landmarks needed to obtain a solution, and algorithms are presented for computing these minimum-landmark solutions in closed form. These results provide the basis for an automatic system that can solve the LDP under difficult viewing

23,396 citations

Journal ArticleDOI
TL;DR: This paper has designed a stand-alone, flexible C++ implementation that enables the evaluation of individual components and that can easily be extended to include new algorithms.
Abstract: Stereo matching is one of the most active research areas in computer vision. While a large number of algorithms for stereo correspondence have been developed, relatively little work has been done on characterizing their performance. In this paper, we present a taxonomy of dense, two-frame stereo methods designed to assess the different components and design decisions made in individual stereo algorithms. Using this taxonomy, we compare existing stereo methods and present experiments evaluating the performance of many different variants. In order to establish a common software platform and a collection of data sets for easy evaluation, we have designed a stand-alone, flexible C++ implementation that enables the evaluation of individual components and that can be easily extended to include new algorithms. We have also produced several new multiframe stereo data sets with ground truth, and are making both the code and data sets available on the Web.

7,458 citations


"Automatic reconstruction of as-buil..." refers background in this paper

  • ...In other fields, such as computer vision, standard test sets and performance metrics have been established [72,83], but no standard evaluation metrics have been established for as-built BIM creation as yet....

    [...]

Journal ArticleDOI
TL;DR: Recognition-by-components (RBC) provides a principled account of the heretofore undecided relation between the classic principles of perceptual organization and pattern recognition.
Abstract: The perceptual recognition of objects is conceptualized to be a process in which the image of the input is segmented at regions of deep concavity into an arrangement of simple geometric components, such as blocks, cylinders, wedges, and cones. The fundamental assumption of the proposed theory, recognition-by-components (RBC), is that a modest set of generalized-cone components, called geons (N £ 36), can be derived from contrasts of five readily detectable properties of edges in a two-dimensiona l image: curvature, collinearity, symmetry, parallelism, and cotermination. The detection of these properties is generally invariant over viewing position an$ image quality and consequently allows robust object perception when the image is projected from a novel viewpoint or is degraded. RBC thus provides a principled account of the heretofore undecided relation between the classic principles of perceptual organization and pattern recognition: The constraints toward regularization (Pragnanz) characterize not the complete object but the object's components. Representational power derives from an allowance of free combinations of the geons. A Principle of Componential Recovery can account for the major phenomena of object recognition: If an arrangement of two or three geons can be recovered from the input, objects can be quickly recognized even when they are occluded, novel, rotated in depth, or extensively degraded. The results from experiments on the perception of briefly presented pictures by human observers provide empirical support for the theory. Any single object can project an infinity of image configurations to the retina. The orientation of the object to the viewer can vary continuously, each giving rise to a different two-dimensional projection. The object can be occluded by other objects or texture fields, as when viewed behind foliage. The object need not be presented as a full-colored textured image but instead can be a simplified line drawing. Moreover, the object can even be missing some of its parts or be a novel exemplar of its particular category. But it is only with rare exceptions that an image fails to be rapidly and readily classified, either as an instance of a familiar object category or as an instance that cannot be so classified (itself a form of classification).

5,464 citations


"Automatic reconstruction of as-buil..." refers background in this paper

  • ...Various researchers have proposed candidate sets of primitives, such as geons [9], superquadrics [3], and generalized cylinders [10]....

    [...]

Journal ArticleDOI
TL;DR: Two of the most critical requirements in support of producing reliable face-recognition systems are a large database of facial images and a testing procedure to evaluate systems.
Abstract: Two of the most critical requirements in support of producing reliable face-recognition systems are a large database of facial images and a testing procedure to evaluate systems. The Face Recognition Technology (FERET) program has addressed both issues through the FERET database of facial images and the establishment of the FERET tests. To date, 14,126 images from 1,199 individuals are included in the FERET database, which is divided into development and sequestered portions of the database. In September 1996, the FERET program administered the third in a series of FERET face-recognition tests. The primary objectives of the third test were to 1) assess the state of the art, 2) identify future areas of research, and 3) measure algorithm performance.

4,816 citations

Proceedings ArticleDOI
01 Aug 1996
TL;DR: This paper presents a volumetric method for integrating range images that is able to integrate a large number of range images yielding seamless, high-detail models of up to 2.6 million triangles.
Abstract: A number of techniques have been developed for reconstructing surfaces by integrating groups of aligned range images. A desirable set of properties for such algorithms includes: incremental updating, representation of directional uncertainty, the ability to fill gaps in the reconstruction, and robustness in the presence of outliers. Prior algorithms possess subsets of these properties. In this paper, we present a volumetric method for integrating range images that possesses all of these properties. Our volumetric representation consists of a cumulative weighted signed distance function. Working with one range image at a time, we first scan-convert it to a distance function, then combine this with the data already acquired using a simple additive scheme. To achieve space efficiency, we employ a run-length encoding of the volume. To achieve time efficiency, we resample the range image to align with the voxel grid and traverse the range and voxel scanlines synchronously. We generate the final manifold by extracting an isosurface from the volumetric grid. We show that under certain assumptions, this isosurface is optimal in the least squares sense. To fill gaps in the model, we tessellate over the boundaries between regions seen to be empty and regions never observed. Using this method, we are able to integrate a large number of range images (as many as 70) yielding seamless, high-detail models of up to 2.6 million triangles.

3,282 citations


"Automatic reconstruction of as-buil..." refers background in this paper

  • ...Non-parametric geometricmodeling reconstructs a surface, typically in the formof a triangle mesh [41], or a volume [18]....

    [...]