scispace - formally typeset
Search or ask a question
Journal ArticleDOI

Automotive Traction Inverters: Current Status and Future Trends

06 Feb 2019-IEEE Transactions on Vehicular Technology (IEEE)-Vol. 68, Iss: 4, pp 3337-3350
TL;DR: An independent review of the state-of-the-art traction inverter designs from several production vehicles across multiple manufacturers is presented, highlighting wide bandgap devices and trends in device packaging.
Abstract: Traction inverters are crucial components of modern electrified automotive powertrains. Advances in power electronics have enabled lower cost inverters with high reliability, efficiency, and power density, suitable for mass market consumer automotive applications. This paper presents an independent review of the state-of-the-art traction inverter designs from several production vehicles across multiple manufacturers. Future trends in inverter design are identified based on industry examples and academic research. Wide bandgap devices and trends in device packaging are discussed along with active gate driver implementations, current and future trends in system integration, and advanced manufacturing techniques.
Citations
More filters
Journal ArticleDOI
28 Nov 2019
TL;DR: Different topologies used in dual three-phase drives and the modulation techniques used to operate them are presented as well as the status of using MPDs in traction applications industrially and the upcoming trends toward promoting this technology more are presented.
Abstract: This article attempts to cover the most recent advancements in multiphase drives (MPDs), which are candidates for replacing three-phase drives in electric vehicle (EV) applications. Multiphase machines have distinctive features that arouse many research directions. This article reviews the recent advancements in several aspects such as topology, control, and performance to evaluate the possibility of exploiting them more in EV applications in future. The six-phase drives are extensively covered here because of their inherent structure as a dual three-phase system, which eases the production process. This article presents different topologies used in dual three-phase drives and the modulation techniques used to operate them as well as the status of using MPDs in traction applications industrially and the upcoming trends toward promoting this technology more.

149 citations

Journal ArticleDOI
03 Mar 2021
TL;DR: In this article, the advantages and disadvantages of higher DC-link voltage in traction inverters, as well as a review of the recent research on multilevel inverter topologies for electrified transportation applications are discussed.
Abstract: Traction inverter, as a critical component in electrified transportation, has been the subject of many research projects in terms of topologies, modulation, and control schemes. Recently, some of the well-known electric vehicle manufacturers have utilized higher-voltage batteries to benefit from lower current, higher power density, and faster charging times. With the ongoing trend toward higher DC-link voltage in electric vehicles, some multilevel structures have been investigated as a feasible and efficient option for replacing the two-level inverters. Higher efficiency, higher power density, better waveform quality, and inherent fault-tolerance are the foremost advantages of multilevel inverters which make them an attractive solution for this application. This paper presents an investigation of the advantages and disadvantages of higher DC-link voltage in traction inverters, as well as a review of the recent research on multilevel inverter topologies for electrified transportation applications. A comparison of multilevel inverters with their two-level counterpart is conducted in terms of efficiency, cost, power density, power quality, reliability, and fault tolerance. Additionally, a comprehensive comparison of different topologies of multilevel inverters is conducted based on the most important criteria in transportation electrification. Future trends and possible research areas are also discussed.

121 citations

Journal ArticleDOI
25 Mar 2021
TL;DR: In this article, the authors provide an overview of the status of the light-duty-EV market and current projections for future adoption; insights on market opportunities beyond light duty EVs; cost and performance evolution for batteries, power electronics, and electric machines that are key components of EV success.
Abstract: Electric vehicles (EVs) are experiencing a rise in popularity over the past few years as the technology has matured and costs have declined, and support for clean transportation has promoted awareness, increased charging opportunities, and facilitated EV adoption. Suitably, a vast body of literature has been produced exploring various facets of EVs and their role in transportation and energy systems. This paper provides a timely and comprehensive review of scientific studies looking at various aspects of EVs, including: (a) an overview of the status of the light-duty-EV market and current projections for future adoption; (b) insights on market opportunities beyond light-duty EVs; (c) a review of cost and performance evolution for batteries, power electronics, and electric machines that are key components of EV success; (d) charging-infrastructure status with a focus on modeling and studies that are used to project charging-infrastructure requirements and the economics of public charging; (e) an overview of the impact of EV charging on power systems at multiple scales, ranging from bulk power systems to distribution networks; (f) insights into life-cycle cost and emissions studies focusing on EVs; and (g) future expectations and synergies between EVs and other emerging trends and technologies. The goal of this paper is to provide readers with a snapshot of the current state of the art and help navigate this vast literature by comparing studies critically and comprehensively and synthesizing general insights. This detailed review paints a positive picture for the future of EVs for on-road transportation, and the authors remain hopeful that remaining technology, regulatory, societal, behavioral, and business-model barriers can be addressed over time to support a transition toward cleaner, more efficient, and affordable transportation solutions for all.

117 citations

Journal ArticleDOI
01 Sep 2021
TL;DR: The current state of 800 V vehicle powertrain electrical design is reviewed, and detailed benefits and challenges related to the battery, propulsion motor, inverter, auxiliary power unit, and on- and off-board charger are discussed.
Abstract: Two of the main challenges for electric vehicle (EV) adoption include limited range and long recharge times. Ultrafast charging can help to mitigate both these concerns. However, for typical 400-V battery EVs (BEVs), the charging rate is limited by the practical cable size required to carry the charging current. To reach ultrahigh charge rates of 350 or 400 kW, 800-V BEVs are a promising alternative. However, the design of an 800-V EV requires careful new considerations for all electrical systems. This article reviews the current state of 800-V vehicle powertrain electrical design and performs an analysis of benefits, challenges, and future trends regarding multiple vehicle powertrain components. Specifically, detailed benefits and challenges related to the battery, propulsion motor, inverter, auxiliary power unit, and on- and off-board chargers are discussed.

110 citations

Journal ArticleDOI
TL;DR: In this paper, an overview of the research for improving lithium-ion battery energy storage density, safety, and renewable energy conversion efficiency is presented, and the issues and challenges of increasing battery energy density are discussed.

105 citations

References
More filters
Journal ArticleDOI
TL;DR: The most important topologies like diode-clamped inverter (neutral-point clamped), capacitor-Clamped (flying capacitor), and cascaded multicell with separate DC sources are presented and the circuit topology options are presented.
Abstract: Multilevel inverter technology has emerged recently as a very important alternative in the area of high-power medium-voltage energy control. This paper presents the most important topologies like diode-clamped inverter (neutral-point clamped), capacitor-clamped (flying capacitor), and cascaded multicell with separate DC sources. Emerging topologies like asymmetric hybrid cells and soft-switched multilevel inverters are also discussed. This paper also presents the most relevant control and modulation methods developed for this family of converters: multilevel sinusoidal pulsewidth modulation, multilevel selective harmonic elimination, and space-vector modulation. Special attention is dedicated to the latest and more relevant applications of these converters such as laminators, conveyor belts, and unified power-flow controllers. The need of an active front end at the input side for those inverters supplying regenerative loads is also discussed, and the circuit topology options are also presented. Finally, the peripherally developing areas such as high-voltage high-power devices and optical sensors and other opportunities for future development are addressed.

6,472 citations

Journal ArticleDOI
10 Dec 2002
TL;DR: The Z-source converter employs a unique impedance network to couple the converter main circuit to the power source, thus providing unique features that cannot be obtained in the traditional voltage-source (or voltage-fed) and current-source converters where a capacitor and inductor are used, respectively.
Abstract: This paper presents an impedance-source (or impedance-fed) power converter (abbreviated as Z-source converter) and its control method for implementing DC-to-AC, AC-to-DC, AC-to-AC, and DC-to-DC power conversion. The Z-source converter employs a unique impedance network (or circuit) to couple the converter main circuit to the power source, thus providing unique features that cannot be obtained in the traditional voltage-source (or voltage-fed) and current-source (or current-fed) converters where a capacitor and inductor are used, respectively. The Z-source converter overcomes the conceptual and theoretical barriers and limitations of the traditional voltage-source converter (abbreviated as V-source converter) and current-source converter (abbreviated as I-source converter) and provides a novel power conversion concept. The Z-source concept can be applied to all DC-to-AC, AC-to-DC, AC-to-AC, and DC-to-DC power conversion. To describe the operating principle and control, this paper focuses on an example: a Z-source inverter for DC-AC power conversion needed in fuel cell applications. Simulation and experimental results are presented to demonstrate the new features.

2,851 citations


"Automotive Traction Inverters: Curr..." refers background in this paper

  • ...teristics of the VSI and CSI where either a voltage or current source can be directly connected to its input terminals [14]....

    [...]

Book
03 Oct 2003
TL;DR: In this paper, an integrated and comprehensive theory of PWM is presented and the selection of the best algorithm for optimum pulse width modulation is an important process that can result in improved converter efficiency, better load (motor) efficiency, and reduced electromagnetic interference.
Abstract: An integrated and comprehensive theory of PWM. The selection of the best algorithm for optimum pulse width modulation is an important process that can result in improved converter efficiency, better load (motor) efficiency, and reduced electromagnetic interference. However, the identification of the best approach is a complex process requiring extensive mathematical manipulation.

2,450 citations


"Automotive Traction Inverters: Curr..." refers background or methods in this paper

  • ...1) Sinusoidal PWM (SPWM): SPWM is one of the most classic techniques used in the industry due to its simplicity [23]....

    [...]

  • ...microcontrollers has enabled low cost implementations [23], [24]....

    [...]

Journal ArticleDOI
TL;DR: In this article, a space vector concept for deriving the switching times for pulsewidth-modulated voltage source inverters is compared with the conventional sinusoidal concept, which results in lower current harmonics and possibly a higher modulation index.
Abstract: A space vector concept for deriving the switching times for pulsewidth-modulated voltage source inverters is compared with the conventional sinusoidal concept. The switching times are deducted from assumptions for minimum current distortion, the resulting mean voltage values are shown, and the differences between these and the established sinusoidal PWM (pulse-width modulator) are elaborated. Based on an analytical calculation the current distortions and torque ripples are evaluated and compared with the values obtained with the conventional method. The space vector representation results in lower current harmonics and possibly a higher modulation index. A modulator based on an 8086 microprocessor has been implemented, and its performance is reported. >

1,719 citations

Journal ArticleDOI
TL;DR: In this article, a review of recent progresses in the development of SiC- and GaN-based power semiconductor devices together with an overall view of the state of the art of this new device generation is presented.
Abstract: Wide bandgap semiconductors show superior material properties enabling potential power device operation at higher temperatures, voltages, and switching speeds than current Si technology. As a result, a new generation of power devices is being developed for power converter applications in which traditional Si power devices show limited operation. The use of these new power semiconductor devices will allow both an important improvement in the performance of existing power converters and the development of new power converters, accounting for an increase in the efficiency of the electric energy transformations and a more rational use of the electric energy. At present, SiC and GaN are the more promising semiconductor materials for these new power devices as a consequence of their outstanding properties, commercial availability of starting material, and maturity of their technological processes. This paper presents a review of recent progresses in the development of SiC- and GaN-based power semiconductor devices together with an overall view of the state of the art of this new device generation.

1,648 citations


"Automotive Traction Inverters: Curr..." refers background in this paper

  • ...Currently Silicon Carbide (SiC) and Gallium Nitride (GaN) are the most promising WBG materials due to their characteristics and commercialization progress [69]....

    [...]