scispace - formally typeset
Search or ask a question
Journal ArticleDOI

B cells with aberrant activation of Notch1 signaling promote Treg and Th2 cell-dominant T-cell responses via IL-33.

25 Sep 2018-Blood Advances (American Society of Hematology)-Vol. 2, Iss: 18, pp 2282-2295
TL;DR: It is shown that B cells harboring dysregulated activation of Notch1 signaling have an immunomodulatory effect on T cells by amplifying regulatory T (Treg) and T helper 2 (Th2) cell responses in an interleukin-33 (IL-33)-dependent manner, and suggests that aberrant activation of notch signaling plays a role in fostering immune privilege in mature B-cell neoplasms.
About: This article is published in Blood Advances.The article was published on 2018-09-25 and is currently open access. It has received 16 citations till now. The article focuses on the topics: T cell & Germinal center.
Citations
More filters
Journal ArticleDOI
TL;DR: The role of YAP/TAZ in immune cells, their interactions with tumor cells, and how this impacts on tumorigenesis, progression, and therapy resistance is focused on.
Abstract: Yes-associated protein (YAP)/WW domain-containing transcription regulator 1 (TAZ) is an important transcriptional regulator and effector of the Hippo signaling pathway that has emerged as a critical determinant of malignancy in many human tumors. YAP/TAZ expression regulates the cross-talk between immune cells and tumor cells in the tumor microenvironment through its influence on T cells, myeloid-derived suppressor cells, and macrophages. However, the mechanisms underlying these effects are poorly understood. An improved understanding of the role of YAP/TAZ in tumor immunity is essential for exploring innovative tumor treatments and making further breakthroughs in antitumor immunotherapy. This review primarily focuses on the role of YAP/TAZ in immune cells, their interactions with tumor cells, and how this impacts on tumorigenesis, progression, and therapy resistance.

51 citations

Journal ArticleDOI
TL;DR: This study was undertaken to investigate whether inhibiting EZH2 ameliorates lupus‐like disease in MRL/lpr mice.
Abstract: Objective We previously identified a role for EZH2, a transcriptional regulator in inducing proinflammatory epigenetic changes in lupus CD4+ T cells. This study was undertaken to investigate whether inhibiting EZH2 ameliorates lupus-like disease in MRL/lpr mice. Methods EZH2 expression levels in multiple cell types in lupus patients were evaluated using flow cytometry and messenger RNA expression data. Inhibition of EZH2 in MRL/lpr mice was achieved by intraperitoneal 3'-deazaneplanocin (DZNep) administration using a preventative and a therapeutic treatment model. Effects of DZNep on animal survival, anti-double-stranded DNA (anti-dsDNA) antibody production, proteinuria, renal histopathology, cytokine production, and T and B cell numbers and percentages were assessed. Results EZH2 expression levels were increased in whole blood, neutrophils, monocytes, B cells, and CD4+ T cells in lupus patients. In MRL/lpr mice, inhibition of EZH2 by DZNep was confirmed by significant reduction of EZH2 and H3K27me3 in splenocytes. Inhibiting EZH2 with DZNep treatment before or after disease onset improved survival and significantly reduced anti-dsDNA antibody production. DZNep-treated mice displayed a significant reduction in renal involvement, splenomegaly, and lymphadenopathy. Lymphoproliferation and numbers of double-negative T cells were significantly reduced in DZNep-treated mice. Concentrations of circulating cytokines and chemokines, including tumor necrosis factor, interferon-γ, CCL2, RANTES/CCL5, interleukin-10 (IL-10), keratinocyte-derived chemokine/CXCL1, IL-12, IL-12p40, and CCL4/macrophage inflammatory protein 1β, were decreased in DZNep-treated mice. Conclusion EZH2 is up-regulated in multiple cell types in lupus patients. Therapeutic inhibition of EZH2 abrogates lupus-like disease in MRL/lpr mice, suggesting that EZH2 inhibitors may be repurposed as a novel therapeutic option for lupus patients.

44 citations

Journal ArticleDOI
TL;DR: By analyzing their relevant roles in the pathogenesis of the two ALL forms, new molecular mechanisms able to modulate cancer cell invasion may be visualized and the partnership between Notch and CXCR4 may have considerable implications in understanding the complexity of T- and B-ALL.
Abstract: Acute lymphoblastic leukemia (ALL) is the most common cancer among children. Recent advances in chemotherapy have made ALL a curable hematological malignancy. In children, there is 25% chance of disease relapse, typically in the central nervous system. While in adults, there is a higher chance of relapse. ALL may affect B-cell or T-cell lineages. Different genetic alterations characterize the two ALL forms. Deregulated Notch, either Notch1 or Notch3, and CXCR4 receptor signaling are involved in ALL disease development and progression. By analyzing their relevant roles in the pathogenesis of the two ALL forms, new molecular mechanisms able to modulate cancer cell invasion may be visualized. Notably, the partnership between Notch and CXCR4 may have considerable implications in understanding the complexity of T- and B-ALL. These two receptor pathways intersect other critical signals in the proliferative, differentiation, and metabolic programs of lymphocyte transformation. Also, the identification of the crosstalks in leukemia-stroma interaction within the tumor microenvironment may unveil new targetable mechanisms in disease relapse. Further studies are required to identify new challenges and opportunities to develop more selective and safer therapeutic strategies in ALL progression, possibly contributing to improve conventional hematological cancer therapy.

21 citations

Journal ArticleDOI
TL;DR: Using mixed bone marrow chimeric mice, it is demonstrated that IL-33 deficiency resulted in an increased frequency of developing B cells via a cell-intrinsic mechanism starting at the pro-B cell stage parallelingIL-33 expression, which establishes acell-intRinsic, ST2-independent role for IL- 33 in early B cell development.
Abstract: IL-33 is an IL-1 family member protein that is a potent driver of inflammatory responses in both allergic and nonallergic disease. This proinflammatory effect is mediated primarily by extracellular release of IL-33 from stromal cells and binding of the C-terminal domain of IL-33 to its receptor ST2 on targets such as CD4+ Th2 cells, ILC2, and mast cells. Notably, IL-33 has a distinct N-terminal domain that mediates nuclear localization and chromatin binding. However, a defined in vivo cell-intrinsic role for IL-33 has not been established. We identified IL-33 expression in the nucleus of progenitor B (pro-B) and large precursor B cells in the bone marrow, an expression pattern unique to B cells among developing lymphocytes. The IL-33 receptor ST2 was not expressed within the developing B cell lineage at either the transcript or protein level. RNA sequencing analysis of wild-type and IL-33-deficient pro-B and large precursor B cells revealed a unique, IL-33-dependent transcriptional profile wherein IL-33 deficiency led to an increase in E2F targets, cell cycle genes, and DNA replication and a decrease in the p53 pathway. Using mixed bone marrow chimeric mice, we demonstrated that IL-33 deficiency resulted in an increased frequency of developing B cells via a cell-intrinsic mechanism starting at the pro-B cell stage paralleling IL-33 expression. Finally, IL-33 was detectable during early B cell development in humans and IL33 mRNA expression was decreased in B cell chronic lymphocytic leukemia samples compared with healthy controls. Collectively, these data establish a cell-intrinsic, ST2-independent role for IL-33 in early B cell development.

19 citations


Cites background from "B cells with aberrant activation of..."

  • ...Most notably, another group has similarly shown selection for increased IL33 expression in DLBCL, which, in mice, promoted T regulatory cell activation (48)....

    [...]

Journal ArticleDOI
TL;DR: The Notch pathway is highly evolutionarily conserved, dictating cell fate decisions and influencing the survival and growth of progenitor cells that give rise to the cells of the immune system as mentioned in this paper.
Abstract: The Notch signaling pathway is highly evolutionarily conserved, dictating cell fate decisions and influencing the survival and growth of progenitor cells that give rise to the cells of the immune system. The roles of Notch signaling in hematopoietic stem cell maintenance and in specification of T lineage cells have been well-described. Notch signaling also plays important roles in B cells. In particular, it is required for specification of marginal zone type B cells, but Notch signaling is also important in other stages of B cell development and activation. This review will focus on established and new roles of Notch signaling during B lymphocyte lineage commitment and describe the function of Notch within mature B cells involved in immune responses.

17 citations

References
More filters
Journal ArticleDOI
TL;DR: The goal of the Gene Ontology Consortium is to produce a dynamic, controlled vocabulary that can be applied to all eukaryotes even as knowledge of gene and protein roles in cells is accumulating and changing.
Abstract: Genomic sequencing has made it clear that a large fraction of the genes specifying the core biological functions are shared by all eukaryotes. Knowledge of the biological role of such shared proteins in one organism can often be transferred to other organisms. The goal of the Gene Ontology Consortium is to produce a dynamic, controlled vocabulary that can be applied to all eukaryotes even as knowledge of gene and protein roles in cells is accumulating and changing. To this end, three independent ontologies accessible on the World-Wide Web (http://www.geneontology.org) are being constructed: biological process, molecular function and cellular component.

35,225 citations

Journal ArticleDOI
TL;DR: The Gene Set Enrichment Analysis (GSEA) method as discussed by the authors focuses on gene sets, that is, groups of genes that share common biological function, chromosomal location, or regulation.
Abstract: Although genomewide RNA expression analysis has become a routine tool in biomedical research, extracting biological insight from such information remains a major challenge. Here, we describe a powerful analytical method called Gene Set Enrichment Analysis (GSEA) for interpreting gene expression data. The method derives its power by focusing on gene sets, that is, groups of genes that share common biological function, chromosomal location, or regulation. We demonstrate how GSEA yields insights into several cancer-related data sets, including leukemia and lung cancer. Notably, where single-gene analysis finds little similarity between two independent studies of patient survival in lung cancer, GSEA reveals many biological pathways in common. The GSEA method is embodied in a freely available software package, together with an initial database of 1,325 biologically defined gene sets.

34,830 citations

Journal ArticleDOI
01 Nov 2005-Immunity
TL;DR: A member of theIL-1 family, IL-33, which mediates its biological effects via IL-1 receptor ST 2, activates NF-kappaB and MAP kinases, and drives production of T(H)2-associated cytokines from in vitro polarized T( H)2 cells is reported.

3,306 citations

Journal ArticleDOI
17 Apr 2009-Cell
TL;DR: This Review highlights recent studies in Notch signaling that reveal new molecular details about the regulation of ligand-mediated receptor activation, receptor proteolysis, and target selection.

3,120 citations

Journal ArticleDOI
15 Jan 2015-Cell
TL;DR: The genetic findings provide evidence for immunoediting in tumors and uncover mechanisms of tumor-intrinsic resistance to cytolytic activity, suggesting immune-mediated elimination.

2,600 citations

Related Papers (5)