scispace - formally typeset
Search or ask a question
Journal ArticleDOI

Bacterial alkaline proteases: molecular approaches and industrial applications

20 Apr 2002-Applied Microbiology and Biotechnology (Appl Microbiol Biotechnol)-Vol. 59, Iss: 1, pp 15-32
TL;DR: The types and sources of proteases, protease yield-improvement methods, the use of new methods for developing novel proteases and applications of alkaline proteases in industrial sectors are discussed, with an overview on the use in the detergent industry.
Abstract: Proteolytic enzymes are ubiquitous in occurrence, being found in all living organisms, and are essential for cell growth and differentiation. The extracellular proteases are of commercial value and find multiple applications in various industrial sectors. Although there are many microbial sources available for producing proteases, only a few are recognized as commercial producers. A good number of bacterial alkaline proteases are commercially available, such as subtilisin Carlsberg, subtilisin BPN′ and Savinase, with their major application as detergent enzymes. However, mutations have led to newer protease preparations with improved catalytic efficiency and better stability towards temperature, oxidizing agents and changing wash conditions. Many newer preparations, such as Durazym, Maxapem and Purafect, have been produced, using techniques of site-directed mutagenesis and/or random mutagenesis. Directed evolution has also paved the way to a great variety of subtilisin variants with better specificities and stability. Molecular imprinting through conditional lyophilization is coming up to match molecular approaches in protein engineering. There are many possibilities for modifying biocatalysts through molecular approaches. However, the search for microbial sources of novel alkaline proteases in natural diversity through the "metagenome" approach is targeting a hitherto undiscovered wealth of molecular diversity. This fascinating development will allow the biotechnological exploitation of uncultured microorganisms, which by far outnumber the species accessible by cultivation, regardless of the habitat. In this review, we discuss the types and sources of proteases, protease yield-improvement methods, the use of new methods for developing novel proteases and applications of alkaline proteases in industrial sectors, with an overview on the use of alkaline proteases in the detergent industry.
Citations
More filters
Book ChapterDOI
C. Stan Tsai1
14 Apr 2006

3,340 citations

Journal ArticleDOI
TL;DR: Reassembly of multiple genomes has provided insight into energy and nutrient cycling within the community, genome structure, gene function, population genetics and microheterogeneity, and lateral gene transfer among members of an uncultured community.
Abstract: Metagenomics (also referred to as environmental and community genomics) is the genomic analysis of microorganisms by direct extraction and cloning of DNA from an assemblage of microorganisms. The development of metagenomics stemmed from the ineluctable evidence that as-yet-uncultured microorganisms represent the vast majority of organisms in most environments on earth. This evidence was derived from analyses of 16S rRNA gene sequences amplified directly from the environment, an approach that avoided the bias imposed by culturing and led to the discovery of vast new lineages of microbial life. Although the portrait of the microbial world was revolutionized by analysis of 16S rRNA genes, such studies yielded only a phylogenetic description of community membership, providing little insight into the genetics, physiology, and biochemistry of the members. Metagenomics provides a second tier of technical innovation that facilitates study of the physiology and ecology of environmental microorganisms. Novel genes and gene products discovered through metagenomics include the first bacteriorhodopsin of bacterial origin; novel small molecules with antimicrobial activity; and new members of families of known proteins, such as an Na+(Li+)/H+ antiporter, RecA, DNA polymerase, and antibiotic resistance determinants. Reassembly of multiple genomes has provided insight into energy and nutrient cycling within the community, genome structure, gene function, population genetics and microheterogeneity, and lateral gene transfer among members of an uncultured community. The application of metagenomic sequence information will facilitate the design of better culturing strategies to link genomic analysis with pure culture studies.

2,224 citations


Additional excerpts

  • ...Functional screens have identified new enzymes (39, 52, 53, 67, 68, 72, 73, 88, 93, 104, 118, 122, 124, 144) and antibiotics (22, 23, 39, 61, 69, 91, 110, 118, 146) and other reagents in libraries from diverse environments....

    [...]

Journal ArticleDOI
TL;DR: The aim of this review is to remind ourselves and other scientists working in related areas of lignocellulose research of the enormous economic potential of the bioprocessing of residual plant materials generally regarded as “waste”, and to highlight some of the modern approaches which potentially could be used to tackle one of the major impediments, namely high enzyme cost.
Abstract: This review is written from the perspective of scientists working in lignocellulose bioconversion in a developing country and the aim of this review is to remind ourselves and other scientists working in related areas of lignocellulose research of the enormous economic potential of the bioprocessing of residual plant materials generally regarded as “waste”, and secondly to highlight some of the modern approaches which potentially could be used to tackle one of the major impediments, namely high enzyme cost, to speed-up the extensive commercialisation of the lignocellulose bioprocessing. Key words : lignocellulose, bioconversion, enzyme cost. African Journal of Biotechnology Vol. 2 (12), pp. 602-619, December 2003

848 citations


Cites background from "Bacterial alkaline proteases: molec..."

  • ...Although this technology holds out the best opportunity for discovering unique genes, the technology is still in its infancy and issues such as representative cloning, quantitative analysis, and expression still require refining (Gupta et al., 2002)....

    [...]

Journal ArticleDOI
TL;DR: This review describes how to construct complex libraries from soil samples, and how to use these libraries to unravel functions of soil microbial communities.
Abstract: Phylogenetic surveys of soil ecosystems have shown that the number of prokaryotic species found in a single sample exceeds that of known cultured prokaryotes. Soil metagenomics, which comprises isolation of soil DNA and the production and screening of clone libraries, can provide a cultivation-independent assessment of the largely untapped genetic reservoir of soil microbial communities. This approach has already led to the identification of novel biomolecules. However, owing to the complexity and heterogeneity of the biotic and abiotic components of soil ecosystems, the construction and screening of soil-based libraries is difficult and challenging. This review describes how to construct complex libraries from soil samples, and how to use these libraries to unravel functions of soil microbial communities.

762 citations

Journal ArticleDOI
Joel R. Cherry1, Ana Fidantsef1
TL;DR: The use of enzymes in industrial processes can often eliminate the use of high temperatures, organic solvents and extremes of pH, while at the same time offering increased reaction specificity, product purity and reduced environmental impact.

746 citations

References
More filters
Journal ArticleDOI
TL;DR: Phylogenetic analysis of the retrieved rRNA sequence of an uncultured microorganism reveals its closest culturable relatives and may, together with information on the physicochemical conditions of its natural habitat, facilitate more directed cultivation attempts.

9,017 citations

Journal ArticleDOI
TL;DR: Four methods for purifying crude DNA were evaluated for percent recovery, fragment size, speed, enzyme restriction, PCR amplification, and DNA-DNA hybridization and in general, all methods produced DNA pure enough for PCR amplification.
Abstract: A simple, rapid method for bacterial lysis and direct extraction of DNA from soils with minimal shearing was developed to address the risk of chimera formation from small template DNA during subsequent PCR. The method was based on lysis with a high-salt extraction buffer (1.5 M NaCl) and extended heating (2 to 3 h) of the soil suspension in the presence of sodium dodecyl sulfate (SDS), hexadecyltrimethylammonium bromide, and proteinase K. The extraction method required 6 h and was tested on eight soils differing in organic carbon, clay content, and pH, including ones from which DNA extraction is difficult. The DNA fragment size in crude extracts from all soils was > 23 kb. Preliminary trials indicated that DNA recovery from two soils seeded with gram-negative bacteria was 92 to 99%. When the method was tested on all eight unseeded soils, microscopic examination of indigenous bacteria in soil pellets before and after extraction showed variable cell lysis efficiency (26 to 92%). Crude DNA yields from the eight soils ranged from 2.5 to 26.9 micrograms of DNA g-1, and these were positively correlated with the organic carbon content in the soil (r = 0.73). DNA yields from gram-positive bacteria from pure cultures were two to six times higher when the high-salt-SDS-heat method was combined with mortar-and-pestle grinding and freeze-thawing, and most DNA recovered was of high molecular weight. Four methods for purifying crude DNA were also evaluated for percent recovery, fragment size, speed, enzyme restriction, PCR amplification, and DNA-DNA hybridization. In general, all methods produced DNA pure enough for PCR amplification. Since soil type and microbial community characteristics will influence DNA recovery, this study provides guidance for choosing appropriate extraction and purification methods on the basis of experimental goals.

2,826 citations

Journal ArticleDOI
TL;DR: The authors' perspective on microbial diversity has improved enormously over the past few decades in large part due to molecular phylogenetic studies that objectively relate organisms.
Abstract: Our perspective on microbial diversity has improved enormously over the past few decades. In large part this has been due to molecular phylogenetic studies that objectively relate organisms. Phylogenetic trees based on gene sequences are maps with which to articulate the elusive concept of

2,323 citations

Journal ArticleDOI
TL;DR: Despite the extensive research on several aspects of proteases, there is a paucity of knowledge about the roles that govern the diverse specificity of these enzymes and deciphering these secrets would enable to exploit proteases for their applications in biotechnology.
Abstract: Proteases represent the class of enzymes which occupy a pivotal position with respect to their physiological roles as well as their commercial applications. They perform both degradative and synthetic functions. Since they are physiologically necessary for living organisms, proteases occur ubiquitously in a wide diversity of sources such as plants, animals, and microorganisms. Microbes are an attractive source of proteases owing to the limited space required for their cultivation and their ready susceptibility to genetic manipulation. Proteases are divided into exo- and endopeptidases based on their action at or away from the termini, respectively. They are also classified as serine proteases, aspartic proteases, cysteine proteases, and metalloproteases depending on the nature of the functional group at the active site. Proteases play a critical role in many physiological and pathophysiological processes. Based on their classification, four different types of catalytic mechanisms are operative. Proteases find extensive applications in the food and dairy industries. Alkaline proteases hold a great potential for application in the detergent and leather industries due to the increasing trend to develop environmentally friendly technologies. There is a renaissance of interest in using proteolytic enzymes as targets for developing therapeutic agents. Protease genes from several bacteria, fungi, and viruses have been cloned and sequenced with the prime aims of (i) overproduction of the enzyme by gene amplification, (ii) delineation of the role of the enzyme in pathogenecity, and (iii) alteration in enzyme properties to suit its commercial application. Protein engineering techniques have been exploited to obtain proteases which show unique specificity and/or enhanced stability at high temperature or pH or in the presence of detergents and to understand the structure-function relationships of the enzyme. Protein sequences of acidic, alkaline, and neutral proteases from diverse origins have been analyzed with the aim of studying their evolutionary relationships. Despite the extensive research on several aspects of proteases, there is a paucity of knowledge about the roles that govern the diverse specificity of these enzymes. Deciphering these secrets would enable us to exploit proteases for their applications in biotechnology.

2,159 citations