scispace - formally typeset
Search or ask a question
Journal ArticleDOI

Bacterial Contribution in Chronicity of Wounds.

TL;DR: In this paper, the authors investigated the bacterial diversity in chronic wounds and found that Staphylococcus, Pseudomonas, Peptoniphilus, Enterobacter, Stenotrophomonas and Serratia were most frequently found in chronic wound.
Abstract: A wound is damage of a tissue usually caused by laceration of a membrane, generally the skin. Wound healing is accomplished in three stages in healthy individuals, including inflammatory, proliferative, and remodeling stages. Healing of wounds normally starts from the inflammatory phase and ends up in the remodeling phase, but chronic wounds remain in an inflammatory stage and do not show progression due to some specific reasons. Chronic wounds are classified in different categories, such as diabetic foot ulcer (DFU), venous leg ulcers (VLU) and pressure ulcer (PU), surgical site infection (SSI), abscess, or trauma ulcers. Globally, the incidence rate of DFU is 1–4 % and prevalence rate is 5.3–10.5 %. However, colonization of pathogenic bacteria at the wound site is associated with wound chronicity. Most chronic wounds contain more than one bacterial species and produce a synergetic effect that results in previously non-virulent bacterial species becoming virulent and causing damage to the host. While investigating bacterial diversity in chronic wounds, Staphylococcus, Pseudomonas, Peptoniphilus, Enterobacter, Stenotrophomonas, Finegoldia, and Serratia were found most frequently in chronic wounds. Recently, it has been observed that bacteria in chronic wounds develop biofilms that contribute to a delay in healing. In a mature biofilm, bacteria grow slowly due to deficiency of nutrients that results in the resistance of bacteria to antibiotics. The present review reflects the reasons why acute wounds become chronic. Interesting findings include the bacterial load, which forms biofilms and shows high-level resistance toward antibiotics, which is a threat to human health in general and particularly to some patients who have acute wounds.
Citations
More filters
Journal ArticleDOI
TL;DR: A 2018 retrospective analysis of Medicare beneficiaries identified that ∼8.2 million people had wounds with or without infections, with highest expenses were for surgical wounds followed by diabetic foot ulcers, with a higher trend toward costs associated with outpatient wound care compared with inpatient.
Abstract: Significance: A 2018 retrospective analysis of Medicare beneficiaries identified that ∼8.2 million people had wounds with or without infections. Medicare cost estimates for acute and chronic wound treatments ranged from $28.1 billion to $96.8 billion. Highest expenses were for surgical wounds followed by diabetic foot ulcers, with a higher trend toward costs associated with outpatient wound care compared with inpatient. Increasing costs of health care, an aging population, recognition of difficult-to-treat infection threats such as biofilms, and the continued threat of diabetes and obesity worldwide make chronic wounds a substantial clinical, social, and economic challenge. Recent Advances: Chronic wounds are not a problem in an otherwise healthy population. Underlying conditions ranging from malnutrition, to stress, to metabolic syndrome, predispose patients to chronic, nonhealing wounds. From an economic point of view, the annual wound care products market is expected to reach $15-22 billion by 2024. The National Institutes of Health's (NIH) Research Portfolio Online Reporting Tool (RePORT) now lists wounds as a category. Future Directions: A continued rise in the economic, clinical, and social impact of wounds warrants a more structured approach and proportionate investment in wound care, education, and related research.

544 citations

Journal ArticleDOI
TL;DR: It is found that 222-nm light kills MRSA efficiently but, unlike conventional germicidal UV lamps (254 nm), it produces almost no premutagenic UV-associated DNA lesions in a 3D human skin model and it is not cytotoxic to exposed mammalian skin.
Abstract: We have previously shown that 207-nm ultraviolet (UV) light has similar antimicrobial properties as typical germicidal UV light (254 nm), but without inducing mammalian skin damage. The biophysical rationale is based on the limited penetration distance of 207-nm light in biological samples (e.g. stratum corneum) compared with that of 254-nm light. Here we extended our previous studies to 222-nm light and tested the hypothesis that there exists a narrow wavelength window in the far-UVC region, from around 200–222 nm, which is significantly harmful to bacteria, but without damaging cells in tissues. We used a krypton-chlorine (Kr-Cl) excimer lamp that produces 222-nm UV light with a bandpass filter to remove the lower- and higher-wavelength components. Relative to respective controls, we measured: 1. in vitro killing of methicillin-resistant Staphylococcus aureus (MRSA) as a function of UV fluence; 2. yields of the main UV-associated premutagenic DNA lesions (cyclobutane pyrimidine dimers and 6-4 photoprodu...

193 citations


Cites background from "Bacterial Contribution in Chronicit..."

  • ...In addition, targeting bacteria as they alight onto the wound would prevent the formation of bacterial clusters or biofilms (45), which are difficult to eradicate and impede wound healing (46)....

    [...]

Journal ArticleDOI
TL;DR: In this article, the authors highlighted the importance of telemedicine options in the continuum of care and highlighted the need for appropriate investment and a structured approach to wound care, education, and related research.
Abstract: Significance: Chronic wounds impact the quality of life (QoL) of nearly 2.5% of the total population in the United States and the management of wounds has a significant economic impact on health care. Given the aging population, the continued threat of diabetes and obesity worldwide, and the persistent problem of infection, it is expected that chronic wounds will continue to be a substantial clinical, social, and economic challenge. In 2020, the coronavirus disease (COVID) pandemic dramatically disrupted health care worldwide, including wound care. A chronic nonhealing wound (CNHW) is typically correlated with comorbidities such as diabetes, vascular deficits, hypertension, and chronic kidney disease. These risk factors make persons with CNHW at high risk for severe, sometimes lethal outcomes if infected with severe acute respiratory syndrome coronavirus 2 (pathogen causing COVID-19). The COVID-19 pandemic has impacted several aspects of the wound care continuum, including compliance with wound care visits, prompting alternative approaches (use of telemedicine and creation of videos to help with wound dressing changes among others), and encouraging a do-it-yourself wound dressing protocol and use of homemade remedies/substitutions. Recent Advances: There is a developing interest in understanding how the social determinants of health impact the QoL and outcomes of wound care patients. Furthermore, addressing wound care in the light of the COVID-19 pandemic has highlighted the importance of telemedicine options in the continuum of care. Future Directions: The economic, clinical, and social impact of wounds continues to rise and requires appropriate investment and a structured approach to wound care, education, and related research.

179 citations

Journal ArticleDOI
TL;DR: The current understanding of neutrophil contributions to healing, and how the latter can be compromised in disease are discussed.

162 citations

References
More filters
Journal ArticleDOI
TL;DR: It is understood that biofilms are universal, occurring in aquatic and industrial water systems as well as a large number of environments and medical devices relevant for public health, and that treatments may be based on inhibition of genes involved in cell attachment and biofilm formation.
Abstract: Though biofilms were first described by Antonie van Leeuwenhoek, the theory describing the biofilm process was not developed until 1978. We now understand that biofilms are universal, occurring in aquatic and industrial water systems as well as a large number of environments and medical devices relevant for public health. Using tools such as the scanning electron microscope and, more recently, the confocal laser scanning microscope, biofilm researchers now understand that biofilms are not unstructured, homogeneous deposits of cells and accumulated slime, but complex communities of surface-associated cells enclosed in a polymer matrix containing open water channels. Further studies have shown that the biofilm phenotype can be described in terms of the genes expressed by biofilm-associated cells. Microorganisms growing in a biofilm are highly resistant to antimicrobial agents by one or more mechanisms. Biofilm-associated microorganisms have been shown to be associated with several human diseases, such as native valve endocarditis and cystic fibrosis, and to colonize a wide variety of medical devices. Though epidemiologic evidence points to biofilms as a source of several infectious diseases, the exact mechanisms by which biofilm-associated microorganisms elicit disease are poorly understood. Detachment of cells or cell aggregates, production of endotoxin, increased resistance to the host immune system, and provision of a niche for the generation of resistant organisms are all biofilm processes which could initiate the disease process. Effective strategies to prevent or control biofilms on medical devices must take into consideration the unique and tenacious nature of biofilms. Current intervention strategies are designed to prevent initial device colonization, minimize microbial cell attachment to the device, penetrate the biofilm matrix and kill the associated cells, or remove the device from the patient. In the future, treatments may be based on inhibition of genes involved in cell attachment and biofilm formation.

5,748 citations

Journal ArticleDOI
TL;DR: The guidelines for the prevention of surgical wound infections (SSI) were published by the Centers for Disease Control and Prevention (CDC) in 1999 as discussed by the authors, with the goal of reducing infectious complications associated with these procedures.

4,730 citations

Journal ArticleDOI
TL;DR: The features of biofilm infections are summarized, the emerging mechanisms of resistance are reviewed, and potential therapies are discussed.

4,116 citations


"Bacterial Contribution in Chronicit..." refers background in this paper

  • ...Resistance to antibiotics in biofilm-producing bacteria is a crucial problem in the management and treatment of chronic wounds [20, 21]....

    [...]

  • ...in the management and treatment of chronic wounds [21]....

    [...]

Journal ArticleDOI
TL;DR: Owing to the heterogeneous nature of the biofilm, it is likely that there are multiple resistance mechanisms at work within a single community.

3,578 citations

Journal ArticleDOI
TL;DR: It is submitted that complex cell-cell interactions within prokaryotic communities are an ancient characteristic, the development of which was facilitated by the localization of cells at surfaces, which may have provided the protective niche in which attached cells could create a localized homeostatic environment.
Abstract: Prokaryotic biofilms that predominate in a diverse range of ecosystems are often composed of highly structured multispecies communities. Within these communities metabolic activities are integrated, and developmental sequences, not unlike those of multicellular organisms, can be detected. These structural adaptations and interrelationships are made possible by the expression of sets of genes that result in phenotypes that differ profoundly from those of planktonically grown cells of the same species. Molecular and microscopic evidence suggest the existence of a succession of de facto biofilm phenotypes. We submit that complex cell-cell interactions within prokaryotic communities are an ancient characteristic, the development of which was facilitated by the localization of cells at surfaces. In addition to spatial localization, surfaces may have provided the protective niche in which attached cells could create a localized homeostatic environment. In a holistic sense both biofilm and planktonic phenotypes may be viewed as integrated components of prokaryote life.

2,862 citations

Trending Questions (1)
What stage of wound healing that mostly affected by bacterial infection?

Bacterial infection primarily affects the inflammatory stage of wound healing, leading to chronicity and delayed healing.