scispace - formally typeset
Search or ask a question
Journal ArticleDOI

Bacterial motility on a surface: many ways to a common goal.

28 Nov 2003-Annual Review of Microbiology (Annu Rev Microbiol)-Vol. 57, Iss: 1, pp 249-273
TL;DR: This review focuses mainly on surface motility and makes comparisons to features shared by other surface phenomenon.
Abstract: When free-living bacteria colonize biotic or abiotic surfaces, the resultant changes in physiology and morphology have important consequences on their growth, development, and survival. Surface motility, biofilm formation, fruiting body development, and host invasion are some of the manifestations of functional responses to surface colonization. Bacteria may sense the growth surface either directly through physical contact or indirectly by sensing the proximity of fellow bacteria. Extracellular signals that elicit new gene expression include autoinducers, amino acids, peptides, proteins, and carbohydrates. This review focuses mainly on surface motility and makes comparisons to features shared by other surface phenomenon.
Citations
More filters
Journal ArticleDOI
TL;DR: The biophysical and mechanical principles of locomotion at the small scales relevant to cell swimming, tens of micrometers and below are reviewed, with emphasis on the simple physical picture and fundamental flow physics phenomena in this regime.
Abstract: Cell motility in viscous fluids is ubiquitous and affects many biological processes, including reproduction, infection and the marine life ecosystem. Here we review the biophysical and mechanical principles of locomotion at the small scales relevant to cell swimming, tens of micrometers and below. At this scale, inertia is unimportant and the Reynolds number is small. Our emphasis is on the simple physical picture and fundamental flow physics phenomena in this regime. We first give a brief overview of the mechanisms for swimming motility, and of the basic properties of flows at low Reynolds number, paying special attention to aspects most relevant for swimming such as resistance matrices for solid bodies, flow singularities and kinematic requirements for net translation. Then we review classical theoretical work on cell motility, in particular early calculations of swimming kinematics with prescribed stroke and the application of resistive force theory and slender-body theory to flagellar locomotion. After examining the physical means by which flagella are actuated, we outline areas of active research, including hydrodynamic interactions, biological locomotion in complex fluids, the design of small-scale artificial swimmers and the optimization of locomotion strategies. (Some figures in this article are in colour only in the electronic version) This article was invited by Christoph Schmidt.

2,274 citations

Journal ArticleDOI
TL;DR: The structures of all known B. subtilis antibiotics are summarized, including non‐ribosomally produced lipopeptides are involved in biofilm and swarming development, lantibiotics function as pheromones in quorum‐sensing, and a ‘killing factor’ effectuates programmed cell death in sister cells.
Abstract: The endospore-forming rhizobacterium Bacillus subtilis- the model system for Gram-positive organisms, is able to produce more than two dozen antibiotics with an amazing variety of structures. The produced anti-microbial active compounds include predominantly peptides that are either ribosomally synthesized and post-translationally modified (lantibiotics and lantibiotic-like peptides) or non-ribosomally generated, as well as a couple of non-peptidic compounds such as polyketides, an aminosugar, and a phospholipid. Here I summarize the structures of all known B. subtilis antibiotics, their biochemistry and genetic analysis of their biosyntheses. An updated summary of well-studied antibiotic regulation pathways is given. Furthermore, current findings are resumed that show roles for distinct B. subtilis antibiotics beyond the "pure" anti-microbial action: Non-ribosomally produced lipopeptides are involved in biofilm and swarming development, lantibiotics function as pheromones in quorum-sensing, and a "killing factor" effectuates programmed cell death in sister cells. A discussion of how these antibiotics may contribute to the survival of B. subtilis in its natural environment is given.

1,416 citations


Cites background from "Bacterial motility on a surface: ma..."

  • ...Biofilms are highly structured microbial communities that adhere to surfaces and constitute the majority of bacteria in most natural and pathogenic ecosystems (for recent reviews, see Harshey, 2003; Hall-Stoodley et al., 2004; Stanley and Lazazzera, 2004)....

    [...]

Journal ArticleDOI
TL;DR: The physics of locomotion of biological and synthetic microswimmers, and the collective behavior of their assemblies, are reviewed and the hydrodynamic aspects of swimming are addressed.
Abstract: Locomotion and transport of microorganisms in fluids is an essential aspect of life. Search for food, orientation toward light, spreading of off-spring, and the formation of colonies are only possible due to locomotion. Swimming at the microscale occurs at low Reynolds numbers, where fluid friction and viscosity dominates over inertia. Here, evolution achieved propulsion mechanisms, which overcome and even exploit drag. Prominent propulsion mechanisms are rotating helical flagella, exploited by many bacteria, and snake-like or whip-like motion of eukaryotic flagella, utilized by sperm and algae. For artificial microswimmers, alternative concepts to convert chemical energy or heat into directed motion can be employed, which are potentially more efficient. The dynamics of microswimmers comprises many facets, which are all required to achieve locomotion. In this article, we review the physics of locomotion of biological and synthetic microswimmers, and the collective behavior of their assemblies. Starting from individual microswimmers, we describe the various propulsion mechanism of biological and synthetic systems and address the hydrodynamic aspects of swimming. This comprises synchronization and the concerted beating of flagella and cilia. In addition, the swimming behavior next to surfaces is examined. Finally, collective and cooperate phenomena of various types of isotropic and anisotropic swimmers with and without hydrodynamic interactions are discussed.

1,220 citations


Cites background from "Bacterial motility on a surface: ma..."

  • ...…cells, as is evident for, e.g., E. coli, which produce more flagella and, in addition, elongate and become multinucleate (Copeland and Weibel, 2009; Daniels et al., 2004; Darnton et al., 2010; Harshey, 2003; Kaiser, 2007), which underlines the complexity of the interactions in such assemblies....

    [...]

  • ...Aspects of bacterial motility have been discussed by Harshey (2003) and Cates (2012)....

    [...]

  • ...drodynamics of swimming has been reviewed by Lauga and Powers (2009), Ishikawa (2009), Koch and Subramanian (2011), and Golestanian et al. (2011). Aspects of bacterial motility have been discussed by Harshey (2003) and Cates (2012). Sperm motility and chemotaxis has been reviewed by Alvarez et al. (2014). The dynamical properties of active Brownian particles have been discussed by Romanczuk et al. (2012), with ...

    [...]

  • ...ological cells, as is evident for, e.g., E. coli, which produce more agella and, in addition, elongate and become multinucleate (Copeland and Weibel, 2009; Daniels et al., 2004; Darnton et al., 2010; Harshey, 2003; Kaiser, 2007), which underlines the complexity of the interactions in such assemblies. The full characterization of the complex dynamical behavior requires an understanding of the underlying (physic...

    [...]

Journal ArticleDOI
TL;DR: In this article, the authors review the physics of locomotion of biological and synthetic microswimmers, and the collective behavior of their assemblies, including synchronization and the concerted beating of flagella and cilia.
Abstract: Locomotion and transport of microorganisms in fluids is an essential aspect of life. Search for food, orientation toward light, spreading of off-spring, and the formation of colonies are only possible due to locomotion. Swimming at the microscale occurs at low Reynolds numbers, where fluid friction and viscosity dominates over inertia. Here, evolution achieved propulsion mechanisms, which overcome and even exploit drag. Prominent propulsion mechanisms are rotating helical flagella, exploited by many bacteria, and snake-like or whip-like motion of eukaryotic flagella, utilized by sperm and algae. For artificial microswimmers, alternative concepts to convert chemical energy or heat into directed motion can be employed, which are potentially more efficient. The dynamics of microswimmers comprises many facets, which are all required to achieve locomotion. In this article, we review the physics of locomotion of biological and synthetic microswimmers, and the collective behavior of their assemblies. Starting from individual microswimmers, we describe the various propulsion mechanism of biological and synthetic systems and address the hydrodynamic aspects of swimming. This comprises synchronization and the concerted beating of flagella and cilia. In addition, the swimming behavior next to surfaces is examined. Finally, collective and cooperate phenomena of various types of isotropic and anisotropic swimmers with and without hydrodynamic interactions are discussed.

983 citations

Journal ArticleDOI
TL;DR: This review gives a detailed overview of the versatile functions of lipopeptides in the biology of Pseudomonas and Bacillus species, and highlights their role in competitive interactions with coexisting organisms, including bacteria, fungi, oomycetes, protozoa, nematodes and plants.
Abstract: Lipopeptides constitute a structurally diverse group of metabolites produced by various bacterial and fungal genera. In the past decades, research on lipopeptides has been fueled by their antimicrobial, antitumour, immunosuppressant and surfactant activities. However, the natural functions of lipopeptides in the lifestyles of the producing microorganisms have received considerably less attention. The substantial structural diversity of lipopeptides suggests that these metabolites have different natural roles, some of which may be unique to the biology of the producing organism. This review gives a detailed overview of the versatile functions of lipopeptides in the biology of Pseudomonas and Bacillus species, and highlights their role in competitive interactions with coexisting organisms, including bacteria, fungi, oomycetes, protozoa, nematodes and plants. Their functions in cell motility, leading to colonization of novel habitats, and in the formation and development of highly structured biofilms are discussed in detail. Finally, this review provides an update on lipopeptide detection and discovery as well as on novel regulatory mechanisms and genes involved in lipopeptide biosynthesis in these two bacterial genera.

909 citations


Cites background from "Bacterial motility on a surface: ma..."

  • ...All rights reserved motor, push the bacteria forward (Harshey, 2003)....

    [...]

  • ...During swarming, vegetative cells of some bacterial species can differentiate into specialized swarmer cells that are hyperflagellated and generally longer (Harshey, 2003)....

    [...]

References
More filters
Book
01 Jan 1996
TL;DR: The Enteric Bacterial Cell and the Age of Bacteria Variations on a Theme by Escherichia is described.
Abstract: Preface The Enteric Bacterial Cell and the Age of Bacteria Variations on a Theme by Escherichia Part I: Molecular Architecture and Assembly of Cell Parts (11 chapters) Part II: Metabolism and General Physiology (58 chapters) Part III: Utilization of Energy for Cell Activities (7 chapters) Part IV: Regulation of Gene Expression (19 chapters) Part V: Growth of Cells and Cultures (12 chapters) Part VI: Genome, Genetics and Evolution (40 chapters) Part VII: Molecular Pathogenesis (7 chapters)

5,749 citations

Journal ArticleDOI
TL;DR: The evolution of quorum sensing systems in bacteria could, therefore, have been one of the early steps in the development of multicellularity.
Abstract: ▪ Abstract Quorum sensing is the regulation of gene expression in response to fluctuations in cell-population density. Quorum sensing bacteria produce and release chemical signal molecules called autoinducers that increase in concentration as a function of cell density. The detection of a minimal threshold stimulatory concentration of an autoinducer leads to an alteration in gene expression. Gram-positive and Gram-negative bacteria use quorum sensing communication circuits to regulate a diverse array of physiological activities. These processes include symbiosis, virulence, competence, conjugation, antibiotic production, motility, sporulation, and biofilm formation. In general, Gram-negative bacteria use acylated homoserine lactones as autoinducers, and Gram-positive bacteria use processed oligo-peptides to communicate. Recent advances in the field indicate that cell-cell communication via autoinducers occurs both within and between bacterial species. Furthermore, there is mounting data suggesting that ba...

4,449 citations

Journal ArticleDOI
TL;DR: The results reviewed in this article indicate that the formation of biofilms serves as a new model system for the study of microbial development.
Abstract: ▪ Abstract Biofilms can be defined as communities of microorganisms attached to a surface. It is clear that microorganisms undergo profound changes during their transition from planktonic (free-swimming) organisms to cells that are part of a complex, surface-attached community. These changes are reflected in the new phenotypic characteristics developed by biofilm bacteria and occur in response to a variety of environmental signals. Recent genetic and molecular approaches used to study bacterial and fungal biofilms have identified genes and regulatory circuits important for initial cell-surface interactions, biofilm maturation, and the return of biofilm microorganisms to a planktonic mode of growth. Studies to date suggest that the planktonic-biofilm transition is a complex and highly regulated process. The results reviewed in this article indicate that the formation of biofilms serves as a new model system for the study of microbial development.

3,321 citations

Journal ArticleDOI
TL;DR: It is submitted that complex cell-cell interactions within prokaryotic communities are an ancient characteristic, the development of which was facilitated by the localization of cells at surfaces, which may have provided the protective niche in which attached cells could create a localized homeostatic environment.
Abstract: Prokaryotic biofilms that predominate in a diverse range of ecosystems are often composed of highly structured multispecies communities. Within these communities metabolic activities are integrated, and developmental sequences, not unlike those of multicellular organisms, can be detected. These structural adaptations and interrelationships are made possible by the expression of sets of genes that result in phenotypes that differ profoundly from those of planktonically grown cells of the same species. Molecular and microscopic evidence suggest the existence of a succession of de facto biofilm phenotypes. We submit that complex cell-cell interactions within prokaryotic communities are an ancient characteristic, the development of which was facilitated by the localization of cells at surfaces. In addition to spatial localization, surfaces may have provided the protective niche in which attached cells could create a localized homeostatic environment. In a holistic sense both biofilm and planktonic phenotypes may be viewed as integrated components of prokaryote life.

2,862 citations

Journal ArticleDOI
TL;DR: The isolation and characterization of mutants of Pseudomonas aeruginosa PA14 defective in the initiation of biofilm formation on an abiotic surface, polyvinylchloride (PVC) plastic are reported and evidence that microcolonies form by aggregation of cells present in the monolayer is presented.
Abstract: The formation of complex bacterial communities known as biofilms begins with the interaction of planktonic cells with a surface in response to appropriate environmental signals. We report the isolation and characterization of mutants of Pseudomonas aeruginosa PA14 defective in the initiation of biofilm formation on an abiotic surface, polyvinylchloride (PVC) plastic. These mutants are designated surface attachment defective (sad ). Two classes of sad mutants were analysed: (i) mutants defective in flagellar-mediated motility and (ii) mutants defective in biogenesis of the polar-localized type IV pili. We followed the development of the biofilm formed by the wild type over 8 h using phase-contrast microscopy. The wild-type strain first formed a monolayer of cells on the abiotic surface, followed by the appearance of microcolonies that were dispersed throughout the monolayer of cells. Using time-lapse microscopy, we present evidence that microcolonies form by aggregation of cells present in the monolayer. As observed with the wild type, strains with mutations in genes required for the synthesis of type IV pili formed a monolayer of cells on the PVC plastic. However, in contrast to the wild-type strain, the type IV pili mutants did not develop microcolonies over the course of the experiments, suggesting that these structures play an important role in microcolony formation. Very few cells of a non-motile strain (carrying a mutation in flgK) attached to PVC even after 8 h of incubation, suggesting a role for flagella and/or motility in the initial cell-to-surface interactions. The phenotype of these mutants thus allows us to initiate the dissection of the developmental pathway leading to biofilm formation.

2,712 citations