scispace - formally typeset
Search or ask a question
Journal ArticleDOI

Bacterial Quorum-Sensing Network Architectures

17 Nov 2009-Annual Review of Genetics (Annual Reviews)-Vol. 43, Iss: 1, pp 197-222
TL;DR: It is argued that the Vibrio quorum-sensing systems are optimally designed to precisely translate extracellular autoinducer information into internal changes in gene expression.
Abstract: Quorum sensing is a cell-cell communication process in which bacteria use the production and detection of extracellular chemicals called autoinducers to monitor cell population density. Quorum sensing allows bacteria to synchronize the gene expression of the group, and thus act in unison. Here, we review the mechanisms involved in quorum sensing with a focus on the Vibrio harveyi and Vibrio cholerae quorum-sensing systems. We discuss the differences between these two quorum-sensing systems and the differences between them and other paradigmatic bacterial signal transduction systems. We argue that the Vibrio quorum-sensing systems are optimally designed to precisely translate extracellular autoinducer information into internal changes in gene expression. We describe how studies of the V. harveyi and V. cholerae quorum-sensing systems have revealed some of the fundamental mechanisms underpinning the evolution of collective behaviors.

Content maybe subject to copyright    Report

Citations
More filters
Journal ArticleDOI
TL;DR: Recent technological and intellectual advances that have changed thinking about five questions about how have bacteria facilitated the origin and evolution of animals; how do animals and bacteria affect each other’s genomes; how does normal animal development depend on bacterial partners; and how is homeostasis maintained between animals and their symbionts are highlighted.
Abstract: In the last two decades, the widespread application of genetic and genomic approaches has revealed a bacterial world astonishing in its ubiquity and diversity. This review examines how a growing knowledge of the vast range of animal–bacterial interactions, whether in shared ecosystems or intimate symbioses, is fundamentally altering our understanding of animal biology. Specifically, we highlight recent technological and intellectual advances that have changed our thinking about five questions: how have bacteria facilitated the origin and evolution of animals; how do animals and bacteria affect each other’s genomes; how does normal animal development depend on bacterial partners; how is homeostasis maintained between animals and their symbionts; and how can ecological approaches deepen our understanding of the multiple levels of animal–bacterial interaction. As answers to these fundamental questions emerge, all biologists will be challenged to broaden their appreciation of these interactions and to include investigations of the relationships between and among bacteria and their animal partners as we seek a better understanding of the natural world.

2,103 citations


Cites background from "Bacterial Quorum-Sensing Network Ar..."

  • ...Biologists now know that bacteria have social behaviors, communicating with each other through chemical signaling, such as quorum sensing (67, 68); more recently, inter-domain quorum signaling between bacteria and their eukaryotic partners has become evident (22, 69-71)....

    [...]

Journal ArticleDOI
TL;DR: This work reviews the quorum-sensing circuits of Staphylococcus aureus, Bacillus cereus, Pseudomonas aeruginosa, and Vibrio cholerae and examines recent efforts to inhibit quorum sensing in these pathogens with the goal of designing novel antimicrobial therapeutics.
Abstract: Quorum sensing is a process of cell-cell communication that allows bacteria to share information about cell density and adjust gene expression accordingly. This process enables bacteria to express energetically expensive processes as a collective only when the impact of those processes on the environment or on a host will be maximized. Among the many traits controlled by quorum sensing is the expression of virulence factors by pathogenic bacteria. Here we review the quorum-sensing circuits of Staphylococcus aureus, Bacillus cereus, Pseudomonas aeruginosa, and Vibrio cholerae. We outline these canonical quorum-sensing mechanisms and how each uniquely controls virulence factor production. Additionally, we examine recent efforts to inhibit quorum sensing in these pathogens with the goal of designing novel antimicrobial therapeutics.

1,482 citations


Cites background from "Bacterial Quorum-Sensing Network Ar..."

  • ...Processes controlled by QS include bioluminescence, sporulation, competence, antibiotic production, biofilm formation, and virulence factor secretion (reviewed in Novick and Geisinger 2008; Ng and Bassler 2009; Williams and Camara 2009)....

    [...]

  • ...Acyl chains ranging from C4 to C18 have been identified with modifications such as carbonyl and hydroxy moieties at the C3 position (Fuqua et al. 2001; Ng and Bassler 2009)....

    [...]

  • ...In these systems, the LuxI homolog is an AI synthase that catalyzes a reaction between SAM and an acyl carrier protein (ACP) to produce a freely diffusible acyl homoserine lactone (AHL) AI (Engebrecht and Silverman 1984; More et al. 1996; Schaefer et al. 1996; Ng and Bassler 2009)....

    [...]

Journal ArticleDOI
TL;DR: This Review examines how features of quorum sensing signal–response systems combine to control collective behaviours in Gram-negative bacteria and the implications for host–microbial associations and antibacterial therapy.
Abstract: Bacteria use quorum sensing to orchestrate gene expression programmes that underlie collective behaviours. Quorum sensing relies on the production, release, detection and group-level response to extracellular signalling molecules, which are called autoinducers. Recent work has discovered new autoinducers in Gram-negative bacteria, shown how these molecules are recognized by cognate receptors, revealed new regulatory components that are embedded in canonical signalling circuits and identified novel regulatory network designs. In this Review we examine how, together, these features of quorum sensing signal-response systems combine to control collective behaviours in Gram-negative bacteria and we discuss the implications for host-microbial associations and antibacterial therapy.

1,401 citations

Journal ArticleDOI
TL;DR: Quorum sensing, a cell density-based intercellular communication system, which plays a key role in regulation of the bacterial virulence and biofilm formation, could be a promising target for developing new strategies against P. aeruginosa infection.
Abstract: Pseudomonas aeruginosa causes severe and persistent infections in immune compromised individuals and cystic fibrosis sufferers. The infection is hard to eradicate as P. aeruginosa has developed strong resistance to most conventional antibiotics. The problem is further compounded by the ability of the pathogen to form biofilm matrix, which provides bacterial cells a protected environment withstanding various stresses including antibiotics. Quorum sensing (QS), a cell density-based intercellular communication system, which plays a key role in regulation of the bacterial virulence and biofilm formation, could be a promising target for developing new strategies against P. aeruginosa infection. The QS network of P. aeruginosa is organized in a multi-layered hierarchy consisting of at least four interconnected signaling mechanisms. Evidence is accumulating that the QS regulatory network not only responds to bacterial population changes but also could react to environmental stress cues. This plasticity should be taken into consideration during exploration and development of anti-QS therapeutics.

847 citations


Cites background from "Bacterial Quorum-Sensing Network Ar..."

  • ...This article is published with open access at Springerlink.com and journal.hep.com.cn P ro te in gene expression and biofilm formation (Deng et al., 2011; Ng and Bassler, 2009; Pereira et al., 2013; Whitehead et al., 2001)....

    [...]

  • ...gene expression and biofilm formation (Deng et al., 2011; Ng and Bassler, 2009; Pereira et al., 2013; Whitehead et al., 2001)....

    [...]

Journal ArticleDOI
TL;DR: Deciphering the languages of diatoms and bacteria and how they interact will inform the understanding of the role these organisms have in shaping the ocean and how these interactions may change in future oceans.
Abstract: SUMMARY Diatoms and bacteria have cooccurred in common habitats for hundreds of millions of years, thus fostering specific associations and interactions with global biogeochemical consequences. Diatoms are responsible for one-fifth of the photosynthesis on Earth, while bacteria remineralize a large portion of this fixed carbon in the oceans. Through their coexistence, diatoms and bacteria cycle nutrients between oxidized and reduced states, impacting bioavailability and ultimately feeding higher trophic levels. Here we present an overview of how diatoms and bacteria interact and the implications of these interactions. We emphasize that heterotrophic bacteria in the oceans that are consistently associated with diatoms are confined to two phyla. These consistent bacterial associations result from encounter mechanisms that occur within a microscale environment surrounding a diatom cell. We review signaling mechanisms that occur in this microenvironment to pave the way for specific interactions. Finally, we discuss known interactions between diatoms and bacteria and exciting new directions and research opportunities in this field. Throughout the review, we emphasize new technological advances that will help in the discovery of new interactions. Deciphering the languages of diatoms and bacteria and how they interact will inform our understanding of the role these organisms have in shaping the ocean and how these interactions may change in future oceans.

750 citations


Cites background from "Bacterial Quorum-Sensing Network Ar..."

  • ..., LuxR), causing a conformational change and triggering a signal transduction cascade that results in the regulation of multiple genes (127)....

    [...]

References
More filters
Journal ArticleDOI
TL;DR: The transforming growth factor beta (TGF-beta) family of growth factors control the development and homeostasis of most tissues in metazoan organisms and mutations in these pathways are the cause of various forms of human cancer and developmental disorders.
Abstract: The transforming growth factor beta (TGF-beta) family of growth factors control the development and homeostasis of most tissues in metazoan organisms. Work over the past few years has led to the elucidation of a TGF-beta signal transduction network. This network involves receptor serine/threonine kinases at the cell surface and their substrates, the SMAD proteins, which move into the nucleus, where they activate target gene transcription in association with DNA-binding partners. Distinct repertoires of receptors, SMAD proteins, and DNA-binding partners seemingly underlie, in a cell-specific manner, the multifunctional nature of TGF-beta and related factors. Mutations in these pathways are the cause of various forms of human cancer and developmental disorders.

7,710 citations

Journal ArticleDOI
TL;DR: This review focuses on the architectures of bacterial chemical communication networks; how chemical information is integrated, processed, and transduced to control gene expression; how intra- and interspecies cell-cell communication is accomplished; and the intriguing possibility of prokaryote-eukaryote cross-communication.
Abstract: Bacteria communicate with one another using chemical signal molecules. As in higher organisms, the information supplied by these molecules is critical for synchronizing the activities of large groups of cells. In bacteria, chemical communication involves producing, releasing, detecting, and responding to small hormone-like molecules termed autoinducers. This process, termed quorum sensing, allows bacteria to monitor the environment for other bacteria and to alter behavior on a population-wide scale in response to changes in the number and/or species present in a community. Most quorum-sensing-controlled processes are unproductive when undertaken by an individual bacterium acting alone but become beneficial when carried out simultaneously by a large number of cells. Thus, quorum sensing confuses the distinction between prokaryotes and eukaryotes because it enables bacteria to act as multicellular organisms. This review focuses on the architectures of bacterial chemical communication networks; how c...

3,360 citations

Journal ArticleDOI
20 Feb 2009-Cell
TL;DR: The known mechanisms and roles of regulatory RNAs are reviewed, emerging themes are highlighted, and remaining questions are discussed.

1,452 citations


"Bacterial Quorum-Sensing Network Ar..." refers background in this paper

  • ...Until recently, sRNA-mediated gene regulation was underappreciated in bacteria (30, 135)....

    [...]

Journal ArticleDOI
31 Jan 2002-Nature
TL;DR: It is suggested that addition of naturally occurring borate to anAI-2 precursor generates active AI-2, and a potential biological role for boron is indicated, an element required by a number of organisms but for unknown reasons.
Abstract: Cell-cell communication in bacteria is accomplished through the exchange of extracellular signalling molecules called autoinducers. This process, termed quorum sensing, allows bacterial populations to coordinate gene expression. Community cooperation probably enhances the effectiveness of processes such as bioluminescence, virulence factor expression, antibiotic production and biofilm development. Unlike other autoinducers, which are specific to a particular species of bacteria, a recently discovered autoinducer (AI-2) is produced by a large number of bacterial species. AI-2 has been proposed to serve as a 'universal' signal for inter-species communication. The chemical identity of AI-2 has, however, proved elusive. Here we present the crystal structure of an AI-2 sensor protein, LuxP, in a complex with autoinducer. The bound ligand is a furanosyl borate diester that bears no resemblance to previously characterized autoinducers. Our findings suggest that addition of naturally occurring borate to an AI-2 precursor generates active AI-2. Furthermore, they indicate a potential biological role for boron, an element required by a number of organisms but for unknown reasons.

1,451 citations


"Bacterial Quorum-Sensing Network Ar..." refers background in this paper

  • ...Two particular studies, one of AI-2-LuxPQ signaling and one of HAI-1-LuxN signaling, provide insight into how ligand binding elicits the switch in a two-component receptor from kinase to phosphatase (13, 84, 85, 120)....

    [...]

Journal ArticleDOI
TL;DR: Recent studies have begun to integrate acyl-HSL quorum sensing into global regulatory networks and establish its role in developing and maintaining the structure of bacterial communities.
Abstract: Quorum sensing is an example of community behavior prevalent among diverse bacterial species. The term "quorum sensing" describes the ability of a microorganism to perceive and respond to microbial population density, usually relying on the production and subsequent response to diffusible signal molecules. A significant number of gram-negative bacteria produce acylated homoserine lactones (acyl-HSLs) as signal molecules that function in quorum sensing. Bacteria that produce acyl-HSLs can respond to the local concentration of the signaling molecules, and high population densities foster the accumulation of inducing levels of acyl-HSLs. Depending upon the bacterial species, the physiological processes regulated by quorum sensing are extremely diverse, ranging from bioluminescence to swarming motility. Acyl-HSL quorum sensing has become a paradigm for intercellular signaling mechanisms. A flurry of research over the past decade has led to significant understanding of many aspects of quorum sensing including the synthesis of acyl-HSLs, the receptors that recognize the acyl-HSL signal and transduce this information to the level of gene expression, and the interaction of these receptors with the transcriptional machinery. Recent studies have begun to integrate acyl-HSL quorum sensing into global regulatory networks and establish its role in developing and maintaining the structure of bacterial communities.

1,342 citations


"Bacterial Quorum-Sensing Network Ar..." refers background in this paper

  • ...AHLs are composed of homoserine lactone (HSL) rings carrying acyl chains of C4 to C18 in length (25)....

    [...]