scispace - formally typeset
Search or ask a question
Journal ArticleDOI

Bacteriocins of gram-positive bacteria.

01 Sep 1976-Microbiological Research (American Society for Microbiology)-Vol. 59, Iss: 2, pp 171-200
TL;DR: A group of antibacterial proteins produced by gram-positive bacteria have attracted great interest in their potential use as food preservatives and as antibacterial agents to combat certain infections due to gram- positive pathogenic bacteria.
About: This article is published in Microbiological Research.The article was published on 1976-09-01 and is currently open access. It has received 2819 citations till now. The article focuses on the topics: Class II bacteriocin & Antibacterial agent.
Citations
More filters
Journal ArticleDOI
TL;DR: The biochemical and genetic characteristics of these antimicrobial proteins are reviewed and common elements are discussed between the different classes of bacteriocins produced by these Gram-positive bacteria.
Abstract: Lactic acid bacteria produce a variety of bacteriocins that have recently come under detailed investigation. The biochemical and genetic characteristics of these antimicrobial proteins are reviewed and common elements are discussed between the different classes of bacteriocins produced by these Gram-positive bacteria.

2,013 citations

Journal ArticleDOI
TL;DR: The mechanisms for both sorting and targeting of proteins to the envelope of gram-positive bacteria are described and the functions of known surface proteins are reviewed.
Abstract: The cell wall envelope of gram-positive bacteria is a macromolecular, exoskeletal organelle that is assembled and turned over at designated sites. The cell wall also functions as a surface organelle that allows gram-positive pathogens to interact with their environment, in particular the tissues of the infected host. All of these functions require that surface proteins and enzymes be properly targeted to the cell wall envelope. Two basic mechanisms, cell wall sorting and targeting, have been identified. Cell well sorting is the covalent attachment of surface proteins to the peptidoglycan via a C-terminal sorting signal that contains a consensus LPXTG sequence. More than 100 proteins that possess cell wall-sorting signals, including the M proteins of Streptococcus pyogenes, protein A of Staphylococcus aureus, and several internalins of Listeria monocytogenes, have been identified. Cell wall targeting involves the noncovalent attachment of proteins to the cell surface via specialized binding domains. Several of these wall-binding domains appear to interact with secondary wall polymers that are associated with the peptidoglycan, for example teichoic acids and polysaccharides. Proteins that are targeted to the cell surface include muralytic enzymes such as autolysins, lysostaphin, and phage lytic enzymes. Other examples for targeted proteins are the surface S-layer proteins of bacilli and clostridia, as well as virulence factors required for the pathogenesis of L. monocytogenes (internalin B) and Streptococcus pneumoniae (PspA) infections. In this review we describe the mechanisms for both sorting and targeting of proteins to the envelope of gram-positive bacteria and review the functions of known surface proteins.

1,470 citations

Journal ArticleDOI
TL;DR: A total of 221 strains of Lactobacillus isolated from meat and meat products were screened for antagonistic activities under conditions that eliminated the effects of organic acids and hydrogen peroxide, indicating that this substance is a bacteriocin, which was designated sakacin A.
Abstract: A total of 221 strains of Lactobacillus isolated from meat and meat products were screened for antagonistic activities under conditions that eliminated the effects of organic acids and hydrogen peroxide. Nineteen strains of Lactobacillus sake, three strains of Lactobacillus plantarum, and one strain of Lactobacillus curvatus were shown to inhibit the growth of some other lactobacilli in an agar spot test; and cell-free supernatants from 6 of the 19 strains of L. sake exhibited inhibitory activity against indicator organisms. Comparison of the antimicrobial spectra of the supernatants suggested that the inhibitory compounds were not identical. One of the six strains, L. sake Lb 706, was chosen for further study. The compound excreted by L. sake Lb 706 was active against various lactic acid bacteria and Listeria monocytogenes. Its proteinaceous nature, narrow inhibitory spectrum, and bactericidal mode of action indicated that this substance is a bacteriocin, which we designated sakacin A. Curing experiments with two bacteriocin-producing strains of L. sake resulted in mutants that lacked both bacteriocin activity and immunity to the bacteriocin. Plasmid profile analysis of L. sake Lb 706 and two bacteriocin-negative variants of this strain indicated that a plasmid of about 18 megadaltons may be involved in the formation of bacteriocin and immunity to this antibacterial compound. In mixed culture, the bacteriocin-sensitive organisms were killed after the bacteriocin-producing strain reached maximal cell density, whereas there was no decrease in cell number in the presence of the bacteriocin-negative variant. Images

1,355 citations

Journal ArticleDOI
TL;DR: Current knowledge of how such extraordinary protein diversity arose and is maintained in microbial populations and what role these toxins play in mediating microbial population-level and community-level dynamics are summarized.
Abstract: Microbes produce an extraordinary array of microbial defense systems. These include classical antibiotics, metabolic by-products, lytic agents, numerous types of protein exotoxins, and bacteriocins. The abundance and diversity of this potent arsenal of weapons are clear. Less clear are their evolutionary origins and the role they play in mediating microbial interactions. The goal of this review is to explore what we know about the evolution and ecology of the most abundant and diverse family of microbial defense systems: the bacteriocins. We summarize current knowledge of how such extraordinary protein diversity arose and is maintained in microbial populations and what role these toxins play in mediating microbial population-level and community-level dynamics. In the latter half of this review we focus on the potential role bacteriocins may play in addressing human health concerns and the current role they serve in food preservation.

1,127 citations

References
More filters
Journal ArticleDOI
TL;DR: The biochemical and genetic characteristics of these antimicrobial proteins are reviewed and common elements are discussed between the different classes of bacteriocins produced by these Gram-positive bacteria.
Abstract: Lactic acid bacteria produce a variety of bacteriocins that have recently come under detailed investigation. The biochemical and genetic characteristics of these antimicrobial proteins are reviewed and common elements are discussed between the different classes of bacteriocins produced by these Gram-positive bacteria.

2,013 citations

Journal ArticleDOI
TL;DR: The range of inhibitory activity by bacteriocins of lactic acid bacteria can be either narrow, inhibiting only those strains that are closely related to the producer organism, or wide, inhibited a diverse group of Gram-positive microorganisms as mentioned in this paper.

1,754 citations

Journal ArticleDOI
TL;DR: A total of 221 strains of Lactobacillus isolated from meat and meat products were screened for antagonistic activities under conditions that eliminated the effects of organic acids and hydrogen peroxide, indicating that this substance is a bacteriocin, which was designated sakacin A.
Abstract: A total of 221 strains of Lactobacillus isolated from meat and meat products were screened for antagonistic activities under conditions that eliminated the effects of organic acids and hydrogen peroxide. Nineteen strains of Lactobacillus sake, three strains of Lactobacillus plantarum, and one strain of Lactobacillus curvatus were shown to inhibit the growth of some other lactobacilli in an agar spot test; and cell-free supernatants from 6 of the 19 strains of L. sake exhibited inhibitory activity against indicator organisms. Comparison of the antimicrobial spectra of the supernatants suggested that the inhibitory compounds were not identical. One of the six strains, L. sake Lb 706, was chosen for further study. The compound excreted by L. sake Lb 706 was active against various lactic acid bacteria and Listeria monocytogenes. Its proteinaceous nature, narrow inhibitory spectrum, and bactericidal mode of action indicated that this substance is a bacteriocin, which we designated sakacin A. Curing experiments with two bacteriocin-producing strains of L. sake resulted in mutants that lacked both bacteriocin activity and immunity to the bacteriocin. Plasmid profile analysis of L. sake Lb 706 and two bacteriocin-negative variants of this strain indicated that a plasmid of about 18 megadaltons may be involved in the formation of bacteriocin and immunity to this antibacterial compound. In mixed culture, the bacteriocin-sensitive organisms were killed after the bacteriocin-producing strain reached maximal cell density, whereas there was no decrease in cell number in the presence of the bacteriocin-negative variant. Images

1,355 citations

Journal ArticleDOI
TL;DR: Bacteriocin activity can be detected and assayed by a modification of the punchhole method.
Abstract: Bacteriocin activity can be detected and assayed by a modification of the punchhole method.

696 citations