scispace - formally typeset
Search or ask a question

Bacteriocins of grampositive bacteria

01 Jan 1995-Vol. 59, pp 171-200
About: The article was published on 1995-01-01 and is currently open access. It has received 1250 citations till now. The article focuses on the topics: Bacteriocin.
Citations
More filters
Journal ArticleDOI
TL;DR: The mechanisms for both sorting and targeting of proteins to the envelope of gram-positive bacteria are described and the functions of known surface proteins are reviewed.
Abstract: The cell wall envelope of gram-positive bacteria is a macromolecular, exoskeletal organelle that is assembled and turned over at designated sites. The cell wall also functions as a surface organelle that allows gram-positive pathogens to interact with their environment, in particular the tissues of the infected host. All of these functions require that surface proteins and enzymes be properly targeted to the cell wall envelope. Two basic mechanisms, cell wall sorting and targeting, have been identified. Cell well sorting is the covalent attachment of surface proteins to the peptidoglycan via a C-terminal sorting signal that contains a consensus LPXTG sequence. More than 100 proteins that possess cell wall-sorting signals, including the M proteins of Streptococcus pyogenes, protein A of Staphylococcus aureus, and several internalins of Listeria monocytogenes, have been identified. Cell wall targeting involves the noncovalent attachment of proteins to the cell surface via specialized binding domains. Several of these wall-binding domains appear to interact with secondary wall polymers that are associated with the peptidoglycan, for example teichoic acids and polysaccharides. Proteins that are targeted to the cell surface include muralytic enzymes such as autolysins, lysostaphin, and phage lytic enzymes. Other examples for targeted proteins are the surface S-layer proteins of bacilli and clostridia, as well as virulence factors required for the pathogenesis of L. monocytogenes (internalin B) and Streptococcus pneumoniae (PspA) infections. In this review we describe the mechanisms for both sorting and targeting of proteins to the envelope of gram-positive bacteria and review the functions of known surface proteins.

1,470 citations

Journal ArticleDOI
TL;DR: Current knowledge of how such extraordinary protein diversity arose and is maintained in microbial populations and what role these toxins play in mediating microbial population-level and community-level dynamics are summarized.
Abstract: Microbes produce an extraordinary array of microbial defense systems. These include classical antibiotics, metabolic by-products, lytic agents, numerous types of protein exotoxins, and bacteriocins. The abundance and diversity of this potent arsenal of weapons are clear. Less clear are their evolutionary origins and the role they play in mediating microbial interactions. The goal of this review is to explore what we know about the evolution and ecology of the most abundant and diverse family of microbial defense systems: the bacteriocins. We summarize current knowledge of how such extraordinary protein diversity arose and is maintained in microbial populations and what role these toxins play in mediating microbial population-level and community-level dynamics. In the latter half of this review we focus on the potential role bacteriocins may play in addressing human health concerns and the current role they serve in food preservation.

1,127 citations

Journal ArticleDOI
TL;DR: There is increasing evidence that lactobacilli and bifidobacteria, which inhabit the gastrointestinal microbiota, develop antimicrobial activities that participate in the host's gastrointestinal system of defence.
Abstract: The gastrointestinal tract is a complex ecosystem that associates a resident microbiota and cells of various phenotypes lining the epithelial wall expressing complex metabolic activities. The resident microbiota in the digestive tract is a heterogeneous microbial ecosystem containing up to 1×1014 colony-forming units (CFUs) of bacteria. The intestinal microbiota plays an important role in normal gut function and maintaining host health. The host is protected from attack by potentially harmful microbial microorganisms by the physical and chemical barriers created by the gastrointestinal epithelium. The cells lining the gastrointestinal epithelium and the resident microbiota are two partners that properly and/or synergistically function to promote an efficient host system of defence. The gastrointestinal cells that make up the epithelium, provide a physical barrier that protects the host against the unwanted intrusion of microorganisms into the gastrointestinal microbiota, and against the penetration of harmful microorganisms which usurp the cellular molecules and signalling pathways of the host to become pathogenic. One of the basic physiological functions of the resident microbiota is that it functions as a microbial barrier against microbial pathogens. The mechanisms by which the species of the microbiota exert this barrier effect remain largely to be determined. There is increasing evidence that lactobacilli and bifidobacteria, which inhabit the gastrointestinal microbiota, develop antimicrobial activities that participate in the host's gastrointestinal system of defence. The objective of this review is to analyze the in vitro and in vivo experimental and clinical studies in which the antimicrobial activities of selected lactobacilli and bifidobacteria strains have been documented.

1,116 citations

Journal ArticleDOI
TL;DR: Preventive and control strategies like hygienic plant lay-out and design of equipment, choice of materials, correct use and selection of detergents and disinfectants coupled with physical methods can be suitably applied for controlling biofilm formation on food-contact surfaces.

1,049 citations

Journal ArticleDOI
TL;DR: The role of lactic acid bacteria in many such fermentations and the mechanisms of antibiosis with particular reference to bacteriocins are outlined and a brief description of some important fermented foods from various countries are given.

1,013 citations