scispace - formally typeset
Search or ask a question
Journal ArticleDOI

Bad bugs, no drugs: no ESKAPE! An update from the Infectious Diseases Society of America

01 Jan 2010-Yearbook of Surgery (Elsevier BV)-Vol. 2010, pp 141-142
About: This article is published in Yearbook of Surgery.The article was published on 2010-01-01. It has received 771 citations till now.
Citations
More filters
Journal ArticleDOI
TL;DR: This review summarizes emerging efforts in combating against infectious diseases, particularly using antimicrobial NPs and antibiotics delivery systems as new tools to tackle the current challenges in treating infectious diseases.

1,493 citations


Cites background from "Bad bugs, no drugs: no ESKAPE! An u..."

  • ...This also explains the increasing antimicrobial resistance of nosocomial Gram-negative bacteria to extended-spectrum cephalosporin, a class of the newest andmost powerful antibiotics [4]....

    [...]

  • ...For example, drugresistant infections in hospitals and in the communities caused by both Gram-positive and Gram-negative bacterial pathogens are growing [4], and the continued evolution of antimicrobial resistance threatens human health by seriously compromising our ability to treat serious infections [5]....

    [...]

Journal ArticleDOI
28 Aug 2014
TL;DR: In this review the factors that have been linked to the waxing of bacterial resistance are addressed and profiles of bacterial species that are deemed to be particularly concerning at the present time are illustrated.
Abstract: Dangerous, antibiotic resistant bacteria have been observed with increasing frequency over the past several decades. In this review the factors that have been linked to this phenomenon are addressed. Profiles of bacterial species that are deemed to be particularly concerning at the present time are illustrated. Factors including economic impact, intrinsic and acquired drug resistance, morbidity and mortality rates, and means of infection are taken into account. Synchronously with the waxing of bacterial resistance there has been waning antibiotic development. The approaches that scientists are employing in the pursuit of new antibacterial agents are briefly described. The standings of established antibiotic classes as well as potentially emerging classes are assessed with an emphasis on molecules that have been clinically approved or are in advanced stages of development. Historical perspectives, mechanisms of action and resistance, spectrum of activity, and preeminent members of each class are discussed.

1,467 citations


Cites background from "Bad bugs, no drugs: no ESKAPE! An u..."

  • ...Quinolones topoisomerase ii and iv Cinoxacin, nalidixic acid (58), pipemidic acid, ciprofloxacin (59), enoxacin, gatifloxacin, gemifloxacin,levofloxacin (60), lomefloxacin, moxifloxacin, norfloxacin, ofloxacin, sparfloxacin...

    [...]

  • ...Nalidixic acid (58), the first quinolone, was discovered in 1962....

    [...]

Journal ArticleDOI
TL;DR: What clinicians should know about hospital-acquired infections is updated to reflect the latest research on Gram-negative bacteria and antibiotic drug resistance.
Abstract: Hospital-acquired infections are most commonly associated with mechanical ventilation, invasive medical devices, or surgical procedures. Gram-negative bacteria are responsible for more than 30% of hospital-acquired infections and predominate in hospital-acquired pneumonia. They are highly efficient at up-regulating or acquiring mechanisms of antibiotic drug resistance, especially in the presence of antibiotic selection pressure. This review updates what clinicians should know about these often life-threatening infections.

1,114 citations

Journal ArticleDOI
29 May 2014-Nature
TL;DR: It is demonstrated that distinct soil types harbour distinct resistomes, and that the addition of nitrogen fertilizer strongly influenced soil ARG content, challenging previous hypotheses that horizontal gene transfer effectively decouples resistomes from phylogeny.
Abstract: Ancient and diverse antibiotic resistance genes (ARGs) have previously been identified from soil, including genes identical to those in human pathogens. Despite the apparent overlap between soil and clinical resistomes, factors influencing ARG composition in soil and their movement between genomes and habitats remain largely unknown. General metagenome functions often correlate with the underlying structure of bacterial communities. However, ARGs are proposed to be highly mobile, prompting speculation that resistomes may not correlate with phylogenetic signatures or ecological divisions. To investigate these relationships, we performed functional metagenomic selections for resistance to 18 antibiotics from 18 agricultural and grassland soils. The 2,895 ARGs we discovered were mostly new, and represent all major resistance mechanisms. We demonstrate that distinct soil types harbour distinct resistomes, and that the addition of nitrogen fertilizer strongly influenced soil ARG content. Resistome composition also correlated with microbial phylogenetic and taxonomic structure, both across and within soil types. Consistent with this strong correlation, mobility elements (genes responsible for horizontal gene transfer between bacteria such as transposases and integrases) syntenic with ARGs were rare in soil by comparison with sequenced pathogens, suggesting that ARGs may not transfer between soil bacteria as readily as is observed between human pathogens. Together, our results indicate that bacterial community composition is the primary determinant of soil ARG content, challenging previous hypotheses that horizontal gene transfer effectively decouples resistomes from phylogeny.

901 citations

References
More filters
Journal ArticleDOI
TL;DR: An update on potentially effective antibacterial drugs in the late-stage development pipeline is provided, in the hope of encouraging collaboration between industry, academia, the National Institutes of Health, the Food and Drug Administration, and the Centers for Disease Control and Prevention work productively together.
Abstract: The Infectious Diseases Society of America (IDSA) continues to view with concern the lean pipeline for novel therapeutics to treat drug-resistant infections, especially those caused by gram-negative pathogens. Infections now occur that are resistant to all current antibacterial options. Although the IDSA is encouraged by the prospect of success for some agents currently in preclinical development, there is an urgent, immediate need for new agents with activity against these panresistant organisms. There is no evidence that this need will be met in the foreseeable future. Furthermore, we remain concerned that the infrastructure for discovering and developing new antibacterials continues to stagnate, thereby risking the future pipeline of antibacterial drugs. The IDSA proposed solutions in its 2004 policy report, “Bad Bugs, No Drugs: As Antibiotic R&D Stagnates, a Public Health Crisis Brews,” and recently issued a “Call to Action” to provide an update on the scope of the problem and the proposed solutions. A primary objective of these periodic reports is to encourage a community and legislative response to establish greater financial parity between the antimicrobial development and the development of other drugs. Although recent actions of the Food and Drug Administration and the 110th US Congress present a glimmer of hope, significant uncertainly remains. Now, more than ever, it is essential to create a robust and sustainable antibacterial research and development infrastructure—one that can respond to current antibacterial resistance now and anticipate evolving resistance. This challenge requires that industry, academia, the National Institutes of Health, the Food and Drug Administration, the Centers for Disease Control and Prevention, the US Department of Defense, and the new Biomedical Advanced Research and Development Authority at the Department of Health and Human Services work productively together. This report provides an update on potentially effective antibacterial drugs in the late-stage development pipeline, in the hope of encouraging such collaborative action.

4,256 citations