scispace - formally typeset
Search or ask a question
Journal ArticleDOI

Bandwidth allocation in wireless networks with guaranteed packet-loss performance

01 Jun 2000-IEEE ACM Transactions on Networking (IEEE Press)-Vol. 8, Iss: 3, pp 337-349
TL;DR: This work considers the cases of a single and multiplexed traffic streams and derives the exact packet-loss rate (PLR) due to buffer overflow at the sender side of the wireless link and obtains a good approximation using the Chernoff-dominant eigenvalue (CDE) approach.
Abstract: Providing quality-of-service (QoS) guarantees over wireless packet networks poses a host of technical challenges that are not present in wireline networks. One of the key issues is how to account for the characteristics of the time-varying wireless channel and for the impact of link-layer error control in the provisioning of packet-level QoS. We accommodate both aspects in analyzing the packet-loss performance over a wireless link. We consider the cases of a single and multiplexed traffic streams. The link capacity fluctuates according to a fluid version of Gilbert-Elliott channel model. Traffic sources are modeled as on-off fluid processes. For the single-stream case, we derive the exact packet-loss rate (PLR) due to buffer overflow at the sender side of the wireless link. We also obtain a closed-form approximation for the corresponding wireless effective bandwidth. In the case of multiplexed streams, we obtain a good approximation for the PLR using the Chernoff-dominant eigenvalue (CDE) approach. Our analysis is then used to study the optimal forward error correction code rate that guarantees a given PLR while minimizing the allocated bandwidth. Numerical results and simulations are used to verify the adequacy of our analysis and to study the impact of error control on the allocation of bandwidth for guaranteed packet-loss performance.
Citations
More filters
Journal ArticleDOI
Jia Tang1, Xi Zhang1
TL;DR: This work derives an optimal adaptation policy by integrating information theory with the concept of effective capacity for a block fading channel model and considers a more practical scenario where variable-power adaptive modulation is employed over both block fading and Markov correlated fading channels.
Abstract: We propose a quality-of-service (QoS) driven power and rate adaptation scheme over wireless links in mobile wireless networks. Specifically, our proposed scheme aims at maximizing the system throughput subject to a given delay QoS constraint. First, we derive an optimal adaptation policy by integrating information theory with the concept of effective capacity for a block fading channel model. Our analyses reveal an important fact that there exists a fundamental tradeoff between throughput and QoS provisioning. In particular, when the QoS constraint becomes loose, the optimal power-control policy converges to the well-known water-filling scheme, where Shannon (ergodic) capacity can be achieved. On the other hand, when the QoS constraint gets stringent, the optimal policy converges to the total channel inversion scheme under which the system operates at a constant rate. Inspired by the above observations, we then consider a more practical scenario where variable-power adaptive modulation is employed over both block fading and Markov correlated fading channels. In both cases, we derive the associated power and rate adaptation policies. The obtained results suggest that the channel correlation has a significant impact on QoS-driven power and rate adaptations. The higher the correlation is, the faster the power-control policy converges to the total channel inversion when the QoS constraint becomes more stringent. Finally, we conduct simulations to verify that the adaptation policy proposed for Markov channel models can also be applied to the more general channel models.

514 citations

Journal ArticleDOI
Jia Tang1, Xi Zhang1
TL;DR: The simulations and numerical results verify that the proposed physical-datalink cross-layer resource allocation scheme can efficiently support diverse QoS requirements over wireless relay networks and demonstrate the importance of deploying the dynamic resource allocation for stringent delay QoS guarantees.
Abstract: The authors propose a physical-datalink cross-layer resource allocation scheme over wireless relay networks for quality-of-service (QoS) guarantees. By integrating information theory with the concept of effective capacity, the proposed scheme aims at maximizing the relay network throughput subject to a given delay QoS constraint. This delay constraint is characterized by the so-called QoS exponent thetas, which is the only requested information exchanged between the physical layer and the datalink layer in our cross-layer design based scheme. Over both amplify-and-forwards (AF) and decode-and-forward (DF) relay networks; the authors develop the associated dynamic resource allocation algorithms for wireless multimedia communications. Over DF relay network, the authors also study a fixed power allocation scheme to provide QoS guarantees. The simulations and numerical results verify that our proposed cross-layer resource allocation can efficiently support diverse QoS requirements over wireless relay networks. Both AF and DF relays show significant superiorities over direct transmissions when the delay QoS constraints are stringent. On the other hand, the results demonstrate the importance of deploying the dynamic resource allocation for stringent delay QoS guarantees.

260 citations

Journal ArticleDOI
TL;DR: A comprehensive survey is given on several major systematic approaches in dealing with delay-aware control problems, namely the equivalentrate constraint approach, the Lyapunov stability drift approach, and the approximate Markov decision process approach using stochastic learning.
Abstract: In this paper, a comprehensive survey is given on several major systematic approaches in dealing with delay-aware control problems, namely the equivalentrate constraint approach, the Lyapunov stability drift approach, and the approximate Markov decision process approach using stochastic learning. These approaches essentially embrace most of the existing literature regarding delay-aware resource control in wireless systems. They have their relative pros and cons in terms of performance, complexity, and implementation issues. For each of the approaches, the problem setup, the general solution, and the design methodology are discussed. Applications of these approaches to delay-aware resource allocation are illustrated with examples in single-hop wireless networks. Furthermore, recent results regarding delay-aware multihop routing designs in general multihop networks are elaborated. Finally, the delay performances of various approaches are compared through simulations using an example of the uplink OFDMA systems.

210 citations

Journal ArticleDOI
TL;DR: An Admission Control and Dynamic Bandwidth Management scheme that provides fairness and a soft rate guarantee in the absence of distributed MAC-layer weighted fair scheduling and a mapping scheme to translate the bandwidth requirements of an application into its channel time requirements is presented.
Abstract: Distributed weighted fair scheduling schemes for Quality of Service (QoS) support in wireless local area networks have not yet become standard. Therefore, we propose an Admission Control and Dynamic Bandwidth Management scheme that provides fairness and a soft rate guarantee in the absence of distributed MAC-layer weighted fair scheduling. This scheme is especially suitable for smart- rooms where peer-to-peer multimedia transmissions need to adapt their transmission rates co-operatively. We present a mapping scheme to translate the bandwidth requirements of an application into its channel time requirements. The center piece of our scheme is a Bandwidth Manager, which allots each flow a share of the channel, depending on the flow's requirements relative to the requirements of other flows in the network. Admitted flows control their transmission rates so they only occupy the channel for the fraction of time allotted to them. Thus co-operation between flows is achieved and the channel time is fair shared. As the available channel capacity changes and the traffic characteristics of various flows change, the Bandwidth Manager dynamically re-allocates the channel access time to the individual flows. Our simulation experiments show that, at a very low cost and with high probability, every admitted flow in the network will receive at least its minimum requested share of the network bandwidth. We also present extensive testbed experiments with our scheme using a real-time audio streaming application running between Linux laptops equipped with standard IEEE 802.11 network cards.

170 citations


Cites background from "Bandwidth allocation in wireless ne..."

  • ...In wireless network environment, past research has focused on flow scheduling at the access-point to achieve certain fairness criteria between flows competing for the wireless channel [5,7, 15 ]....

    [...]

Proceedings ArticleDOI
23 Mar 2003
TL;DR: This paper proposes an admission control and dynamic bandwidth management scheme that provides fairness in the absence of distributed link level weighted fair scheduling and assists it by supplying the scheduler with weights and adjusting them dynamically as network and traffic characteristics vary.
Abstract: Distributed weighted fair scheduling schemes for QoS support in wireless networks have not yet become standard. In this paper we propose an admission control and dynamic bandwidth management scheme that provides fairness in the absence of distributed link level weighted fair scheduling. In case weighted fair scheduling becomes available, our system assists it by supplying the scheduler with weights and adjusting them dynamically as network and traffic characteristics vary. To obtain these weights, we convert the bandwidth requirement of the application into a channel time requirement. Our bandwidth manager then allots each flow a share of the channel time depending on its requirement relative to the requirements of other flows in the network. It uses a max-min fairness algorithm with minimum guarantees. The flow controls its packet transmission rate so it only occupies the channel for the fraction of time allotted to it by the bandwidth manager. As available bandwidth in the network and the traffic characteristics of various flows change, the channel time proportion allotted also dynamically varies. Our experiments show that, at the cost of a very low overhead, there is a high probability that every flow in the network will receive at least its minimum requested share of the network bandwidth.

156 citations


Cites background from "Bandwidth allocation in wireless ne..."

  • ...In wireless network environment, past research has focused on flow scheduling at the access-point to achieve certain fairness criteria between flows competing for the wireless channel [5,7,15]....

    [...]

References
More filters
01 Jan 1994
TL;DR: The Diskette v 2.06, 3.5''[1.44M] for IBM PC, PS/2 and compatibles [DOS] Reference Record created on 2004-09-07, modified on 2016-08-08.
Abstract: Note: Includes bibliographical references, 3 appendixes and 2 indexes.- Diskette v 2.06, 3.5''[1.44M] for IBM PC, PS/2 and compatibles [DOS] Reference Record created on 2004-09-07, modified on 2016-08-08

19,881 citations

Journal ArticleDOI
Abhay Parekh1, Robert G. Gallager1
TL;DR: Worst-case bounds on delay and backlog are derived for leaky bucket constrained sessions in arbitrary topology networks of generalized processor sharing (GPS) servers and the effectiveness of PGPS in guaranteeing worst-case session delay is demonstrated under certain assignments.
Abstract: Worst-case bounds on delay and backlog are derived for leaky bucket constrained sessions in arbitrary topology networks of generalized processor sharing (GPS) servers. The inherent flexibility of the service discipline is exploited to analyze broad classes of networks. When only a subset of the sessions are leaky bucket constrained, we give succinct per-session bounds that are independent of the behavior of the other sessions and also of the network topology. However, these bounds are only shown to hold for each session that is guaranteed a backlog clearing rate that exceeds the token arrival rate of its leaky bucket. A much broader class of networks, called consistent relative session treatment (CRST) networks is analyzed for the case in which all of the sessions are leaky bucket constrained. First, an algorithm is presented that characterizes the internal traffic in terms of average rate and burstiness, and it is shown that all CRST networks are stable. Next, a method is presented that yields bounds on session delay and backlog given this internal traffic characterization. The links of a route are treated collectively, yielding tighter bounds than those that result from adding the worst-case delays (backlogs) at each of the links in the route. The bounds on delay and backlog for each session are efficiently computed from a universal service curve, and it is shown that these bounds are achieved by "staggered" greedy regimes when an independent sessions relaxation holds. Propagation delay is also incorporated into the model. Finally, the analysis of arbitrary topology GPS networks is related to Packet GPS networks (PGPS). The PGPS scheme was first proposed by Demers, Shenker and Keshav (1991) under the name of weighted fair queueing. For small packet sizes, the behavior of the two schemes is seen to be virtually identical, and the effectiveness of PGPS in guaranteeing worst-case session delay is demonstrated under certain assignments. >

3,967 citations

Book
01 Jan 1983
TL;DR: This book explains coding for Reliable Digital Transmission and Storage using Trellis-Based Soft-Decision Decoding Algorithms for Linear Block Codes and Convolutional Codes, and some of the techniques used in this work.
Abstract: 1. Coding for Reliable Digital Transmission and Storage. 2. Introduction to Algebra. 3. Linear Block Codes. 4. Important Linear Block Codes. 5. Cyclic Codes. 6. Binary BCH Codes. 7. Nonbinary BCH Codes, Reed-Solomon Codes, and Decoding Algorithms. 8. Majority-Logic Decodable Codes. 9. Trellises for Linear Block Codes. 10. Reliability-Based Soft-Decision Decoding Algorithms for Linear Block Codes. 11. Convolutional Codes. 12. Trellis-Based Decoding Algorithms for Convolutional Codes. 13. Sequential and Threshold Decoding of Convolutional Codes. 14. Trellis-Based Soft-Decision Algorithms for Linear Block Codes. 15. Concatenated Coding, Code Decomposition ad Multistage Decoding. 16. Turbo Coding. 17. Low Density Parity Check Codes. 18. Trellis Coded Modulation. 19. Block Coded Modulation. 20. Burst-Error-Correcting Codes. 21. Automatic-Repeat-Request Strategies.

3,848 citations

Journal ArticleDOI
TL;DR: The authors propose a computationally simple approximate expression to provide a unified metric to represent the effective bandwidth used by connections and the corresponding effective load of network links, which can then be used for efficient bandwidth management, routing, and call control procedures aimed at optimizing network usage.
Abstract: The authors propose a computationally simple approximate expression for the equivalent capacity or bandwidth requirement of both individual and multiplexed connections, based on their statistical characteristics and the desired grade-of-service (GOS). The purpose of such an expression is to provide a unified metric to represent the effective bandwidth used by connections and the corresponding effective load of network links. These link metrics can then be used for efficient bandwidth management, routing, and call control procedures aimed at optimizing network usage. While the methodology proposed can provide an exact approach to the computation of the equivalent capacity, the associated complexity makes it infeasible for real-time network traffic control applications. Hence, an approximation is required. The validity of the approximation developed is verified by comparison to both exact computations and simulation results. >

1,442 citations


"Bandwidth allocation in wireless ne..." refers background or methods in this paper

  • ...In general, it is not possible to obtain an exact closed-form expression for the effective bandwidth 1 ; even for a single source (i.e., no multiplexing), the closed-form solution cannot be obtained without approximation [10], [ 9 ]....

    [...]

  • ...Significant research has been done on the notion of effective bandwidth over wireline networks (e.g., [10], [8], [11], [ 9 ], [12])....

    [...]

  • ...In order to provide QoS guarantees while achieving an acceptable level of bandwidth utilization, integrated networks often employ the concept of effective bandwidth in call admission control (CAC) and service scheduling [8], [ 9 ]....

    [...]

  • ...Guerin et al. proposed an approximate expression for the effective bandwidth of both individual and multiplexed connections, arguing that this approximation is necessary for real-time network traffic control [ 9 ]....

    [...]

Journal ArticleDOI
TL;DR: In this article, the authors considered a physical model in which a buffer receives messages from a finite number of statistically independent and identical information sources that asynchronously alternate between exponentially distributed periods in the ‘on’ and ‘off' states.
Abstract: In this paper we consider a physical model in which a buffer receives messages from a finite number of statistically independent and identical information sources that asynchronously alternate between exponentially distributed periods in the ‘on’ and ‘off’ states. While on, a source transmits at a uniform rate. The buffer depletes through an output channel with a given maximum rate of transmission. This model is useful for a data-handling switch in a computer network. The equilibrium buffer distribution is described by a set of differential equations, which are analyzed herein. The mathematical results render trivial the computation of the distribution and its moments and thus also the waiting time moments. The main result explicitly gives all the system's eigenvalues. While the insertion of boundary conditions requires the solution of a matrix equation, even this step is eliminated since the matrix inverse is given in closed form. Finally, the simple expression given here for the asymptotic behavior of buffer content is insightful, for purposes of design, and numerically useful. Numerical results for a broad range of system parameters are presented graphically.

1,393 citations