scispace - formally typeset
Search or ask a question
Journal ArticleDOI

Bar-Coated Ultrathin Semiconductors from Polymer Blend for One-Step Organic Field-Effect Transistors.

06 Jun 2018-ACS Applied Materials & Interfaces (American Chemical Society)-Vol. 10, Iss: 25, pp 21510-21517
TL;DR: One-step deposition of bi-functional semiconductor-dielectric layers for organic field effect transistors (OFETs) is an effective way to simplify the device fabrication.
Abstract: One-step deposition of bi-functional semiconductor–dielectric layers for organic field-effect transistors (OFETs) is an effective way to simplify the device fabrication. However, the proposed method has rarely been reported in large-area flexible organic electronics. Herein, we demonstrate wafer-scale OFETs by bar coating the semiconducting and insulating polymer blend solution in one-step. The semiconducting polymer poly(3-hexylthiophene) (P3HT) segregates on top of the blend film, whereas dielectric polymethyl methacrylate (PMMA) acts as the bottom layer, which is achieved by a vertical phase separation structure. The morphology of blend film can be controlled by varying the concentration of P3HT and PMMA solutions. The wafer-scale one-step OFETs, with a continuous ultrathin P3HT film of 2.7 nm, exhibit high electrical reproducibility and uniformity. The one-step OFETs extend to substrate-free arrays that can be attached everywhere on varying substrates. In addition, because of the well-ordered molecula...
Citations
More filters
Journal ArticleDOI
TL;DR: An all-inclusive review of the newly developed WFHE along with a summary of imperative requirements of material properties, sensor capabilities, electronics performance, and skin integrations is provided.
Abstract: Recent advances in soft materials and system integration technologies have provided a unique opportunity to design various types of wearable flexible hybrid electronics (WFHE) for advanced human healthcare and human-machine interfaces. The hybrid integration of soft and biocompatible materials with miniaturized wireless wearable systems is undoubtedly an attractive prospect in the sense that the successful device performance requires high degrees of mechanical flexibility, sensing capability, and user-friendly simplicity. Here, the most up-to-date materials, sensors, and system-packaging technologies to develop advanced WFHE are provided. Details of mechanical, electrical, physicochemical, and biocompatible properties are discussed with integrated sensor applications in healthcare, energy, and environment. In addition, limitations of the current materials are discussed, as well as key challenges and the future direction of WFHE. Collectively, an all-inclusive review of the newly developed WFHE along with a summary of imperative requirements of material properties, sensor capabilities, electronics performance, and skin integrations is provided.

554 citations

Journal ArticleDOI
TL;DR: OFETs are revealed to be one of the best systems for mimicking sensory and nervous systems and their applications in biomimetic systems and future challenges in this research area are provided.
Abstract: The emergence of flexible organic electronics that span the fields of physics and biomimetics creates the possibility for increasingly simple and intelligent products for use in everyday life. Organic field-effect transistors (OFETs), with their inherent flexibility, light weight, and biocompatibility, have shown great promise in the field of biomimicry. By applying such biomimetic OFETs for the internet of things (IoT) makes it possible to imagine novel products and use cases for the future. Recent advances in flexible OFETs and their applications in biomimetic systems are reviewed. Strategies to achieve flexible OFETs are individually discussed and recent progress in biomimetic sensory systems and nervous systems is reviewed in detail. OFETs are revealed to be one of the best systems for mimicking sensory and nervous systems. Additionally, a brief discussion of information storage based on OFETs is presented. Finally, a personal view of the utilization of biomimetic OFETs in the IoT and future challenges in this research area are provided.

132 citations

Journal ArticleDOI
TL;DR: In this article, the authors thank the ERCStG 2012•306826 eGames project, the Networking Research Center on Bioengineering, Biomaterials, and Nanomedicine (CIBER•BBN), the DGI (Spain) project, FANCY CTQ2016•80030•R, the Generalitat de Catalunya (2017•SGR‐918), and the Spanish Ministry of Economy and Competitiveness, through the “Severo Ochoa” Programme for Centres of Excellence in R
Abstract: The authors thank the ERCStG 2012‐306826 e‐GAMES project, the Networking Research Center on Bioengineering, Biomaterials, and Nanomedicine (CIBER‐BBN), the DGI (Spain) project, FANCY CTQ2016‐80030‐R, the Generalitat de Catalunya (2017‐SGR‐918), and the Spanish Ministry of Economy and Competitiveness, through the “Severo Ochoa” Programme for Centres of Excellence in R&D (SEV‐2015‐0496). F.L. and R.P. gratefully acknowledge the “Juan de la Cierva” programme. The authors thank Dr. Xenofon Strakosas for his help with the TOC image.

78 citations

Journal ArticleDOI
TL;DR: In this paper, a DPP-based material with polymer as additive was carried out to fabricate self-assembly organic crystals, by optimizing the blend ratios and concentrations of the solution, well aligned, high quality crystals were successfully achieved.

63 citations

References
More filters
Journal ArticleDOI
29 Apr 2004-Nature
TL;DR: The future holds even greater promise for this technology, with an entirely new generation of ultralow-cost, lightweight and even flexible electronic devices in the offing, which will perform functions traditionally accomplished using much more expensive components based on conventional semiconductor materials such as silicon.
Abstract: Organic electronics are beginning to make significant inroads into the commercial world, and if the field continues to progress at its current, rapid pace, electronics based on organic thin-film materials will soon become a mainstay of our technological existence. Already products based on active thin-film organic devices are in the market place, most notably the displays of several mobile electronic appliances. Yet the future holds even greater promise for this technology, with an entirely new generation of ultralow-cost, lightweight and even flexible electronic devices in the offing, which will perform functions traditionally accomplished using much more expensive components based on conventional semiconductor materials such as silicon.

4,967 citations

Journal ArticleDOI
26 Mar 2010-Science
TL;DR: Inorganic and organic electronic materials in microstructured and nanostructured forms, intimately integrated with elastomeric substrates, offer particularly attractive characteristics, with realistic pathways to sophisticated embodiments, and applications in systems ranging from electronic eyeball cameras to deformable light-emitting displays are described.
Abstract: Recent advances in mechanics and materials provide routes to integrated circuits that can offer the electrical properties of conventional, rigid wafer-based technologies but with the ability to be stretched, compressed, twisted, bent, and deformed into arbitrary shapes. Inorganic and organic electronic materials in microstructured and nanostructured forms, intimately integrated with elastomeric substrates, offer particularly attractive characteristics, with realistic pathways to sophisticated embodiments. Here, we review these strategies and describe applications of them in systems ranging from electronic eyeball cameras to deformable light-emitting displays. We conclude with some perspectives on routes to commercialization, new device opportunities, and remaining challenges for research.

4,127 citations

Journal ArticleDOI
06 Jan 2017-Science
TL;DR: The increased polymer chain dynamics under nanoconfinement significantly reduces the modulus of the conjugated polymer and largely delays the onset of crack formation under strain, and the fabricated semiconducting film can be stretched up to 100% strain without affecting mobility, retaining values comparable to that of amorphous silicon.
Abstract: Soft and conformable wearable electronics require stretchable semiconductors, but existing ones typically sacrifice charge transport mobility to achieve stretchability. We explore a concept based on the nanoconfinement of polymers to substantially improve the stretchability of polymer semiconductors, without affecting charge transport mobility. The increased polymer chain dynamics under nanoconfinement significantly reduces the modulus of the conjugated polymer and largely delays the onset of crack formation under strain. As a result, our fabricated semiconducting film can be stretched up to 100% strain without affecting mobility, retaining values comparable to that of amorphous silicon. The fully stretchable transistors exhibit high biaxial stretchability with minimal change in on current even when poked with a sharp object. We demonstrate a skinlike finger-wearable driver for a light-emitting diode.

796 citations

Journal ArticleDOI
TL;DR: In this article, the differences between printed electronics and inorganic materials are exploited via molecular-level control of functionality compared with inorganic electronics if they are to become commercially viable for flexible displays.
Abstract: Organic materials can offer a low-cost alternative for printed electronics and flexible displays. However, research in these systems must exploit the differences - via molecular-level control of functionality - compared with inorganic electronics if they are to become commercially viable.

603 citations

Journal ArticleDOI
TL;DR: Semiconductors deposited by vapor deposition onto the crystalline OTS SAM grow in a favorable two-dimensional layered growth manner which is generally preferred morphologically for high charge carrier transport.
Abstract: Crystalline self-assembled monolayers (SAMs) of organosilane compounds such as octadecyltrimethoxysilane (OTMS) and octadecyltrichlorosilane (OTCS) were deposited by a simple, spin-casting technique onto Si/SiO(2) substrates. Fabrication of the OTMS SAMs and characterization using ellipsometry, contact angle, atomic force microscopy (AFM), grazing angle attenuated total reflectance Fourier transform infrared (GATR-FTIR) spectroscopy and grazing incidence X-ray diffraction (GIXD) are described. The characterization confirms that these monolayers exhibit a well-packed crystalline phase and a remarkably high degree of smoothness. Semiconductors deposited by vapor deposition onto the crystalline OTS SAM grow in a favorable two-dimensional layered growth manner which is generally preferred morphologically for high charge carrier transport. On the OTMS SAM treated dielectric, pentacene OFETs showed hole mobilities as high as 3.0 cm(2)/V x s, while electron mobilities as high as 5.3 cm(2)/V x s were demonstrated for C(60).

547 citations

Related Papers (5)