scispace - formally typeset
Search or ask a question
Proceedings ArticleDOI

Base excited hybrid energy harvesting

TL;DR: In this paper a simplified two-degree of freedom lumped mass model is studied for the analysis of the proposed hybrid harvesting system for harmonic vibration input and attempts are made to optimize the parameters of the model to get maximum net power generated by the system.
Abstract: This paper proposes a novel energy harvesting system model based on combined electromechanical and electromagnetic transduction technique. A cantilever substrate (beam) with piezoelectric (PZT) patch and a mass at the tip is considered for electromechanical transductions. A magnet is hanged through a spring at the tip of the composite beam over a printed circuit board. When the cantilever system is subjected to base excitations, the motion of the magnet relative to a conducting circuit placed near it generates electric energy in the circuit, while the strains induced in the PZT patch will also generate electric energy. In this paper a simplified two-degree of freedom lumped mass model is studied for the analysis of the proposed hybrid harvesting system for harmonic vibration input. Attempts are made to optimize the parameters of the model to get maximum net power generated by the system.
Citations
More filters
22 Oct 2007
TL;DR: The fifth edition of "Numerical Methods for Engineers" continues its tradition of excellence and expanded breadth of engineering disciplines covered is especially evident in the problems, which now cover such areas as biotechnology and biomedical engineering.
Abstract: The fifth edition of "Numerical Methods for Engineers" continues its tradition of excellence. Instructors love this text because it is a comprehensive text that is easy to teach from. Students love it because it is written for them--with great pedagogy and clear explanations and examples throughout. The text features a broad array of applications, including all engineering disciplines. The revision retains the successful pedagogy of the prior editions. Chapra and Canale's unique approach opens each part of the text with sections called Motivation, Mathematical Background, and Orientation, preparing the student for what is to come in a motivating and engaging manner. Each part closes with an Epilogue containing sections called Trade-Offs, Important Relationships and Formulas, and Advanced Methods and Additional References. Much more than a summary, the Epilogue deepens understanding of what has been learned and provides a peek into more advanced methods. Approximately 80% of the end-of-chapter problems are revised or new to this edition. The expanded breadth of engineering disciplines covered is especially evident in the problems, which now cover such areas as biotechnology and biomedical engineering. Users will find use of software packages, specifically MATLAB and Excel with VBA. This includes material on developing MATLAB m-files and VBA macros.

578 citations

Journal ArticleDOI
TL;DR: In this article, a two-degree-of-freedom nonlinear velocity-amplified energy harvester has been developed, which comprises two masses, relatively oscillating one inside the other between four sets of magnetic springs.
Abstract: Common vibrational energy harvesters are generally based on a linear mass-spring oscillator model, and these typically show narrow bandwidth and high resonant frequency at small scales. To overcome these problems, a two-degree-of-freedom nonlinear velocity-amplified energy harvester has been developed. The device comprises two masses, relatively oscillating one inside the other between four sets of magnetic springs. The magnetic springs introduce nonlinear effects, such as period doubling, that can be exploited to enhance the output power and bandwidth of the harvester. This article studies the dynamics of the harvester when a key geometrical parameter (the height of the device) is varied. For large height values, a significant increase of the output power in regions far from the resonant frequency of the device is observed, and the associated period-doubling effect was verified through high-speed imaging. It is demonstrated that nonlinear effects can be used to enhance the bandwidth of the device in order to harvest energy in regions far from resonance.

14 citations

Book ChapterDOI
01 Jan 2017
TL;DR: This chapter indicates that HEHs not only increase the output powers and power densities, but also enables endless configurations to maximize harnessing existing power sources.
Abstract: In this millennium, the methodologies to harvest existing dissipated powers not only supply input energy to our sophisticated devices, but also contribute the current technological researches and developments. Single harvester generator or harvesting single power source may remain insufficient for the energy feed into the systems like electronic devices, biosensors, human, structural and machine health monitoring, and wireless sensor nodes. To overcome this problem, hybridization of energy harvesters (EHs) takes place to increase the limited energy generation of stand-alone EHs. In this chapter, piezoelectric and electromagnetic generators are compared and classic as well as novel hybrid energy harvester (HEH) designs are reviewed by considering fixed-frequency; broadband including linear, nonlinear and tunable HEHs; multimode; and multisource powered configurations. This review covers two-, three-, four-multi source powered HEHs in micro-, meso- and large-scales. Overall comparisons of classic and novel HEHs are tabulated and discussed in detail in order to guide potential researchers. In the scope of this chapter review, it is seen that HEHs generate greater power outputs than its single harvester components. The most promising power and energy generations are 315 mW by four-source powered novel HEH in meso-scale, 215 μW by tunable broadband classic HEH in microscale and 440 kW h/day by partially three-source powered HEH in large scale. This chapter indicates that HEHs not only increase the output powers and power densities, but also enables endless configurations to maximize harnessing existing power sources.

3 citations


Cites background from "Base excited hybrid energy harvesti..."

  • ...In addition to PEHs, at macroscopic level, EMHs also provide simplicity in geometry, design and production [19]....

    [...]

  • ...Similar to EMHs, PE harvesters (PEHs) do not require voltage source while electrostatic generators require separate voltage source and more difficult in practice, and in contrast to EMHs, PEHs produce sufficient output voltage but at low current level [8, 19, 27]....

    [...]

References
More filters
Journal ArticleDOI
TL;DR: A comprehensive review of existing piezoelectric generators is presented in this paper, including impact coupled, resonant and human-based devices, including large scale discrete devices and wafer-scale integrated versions.
Abstract: This paper reviews the state-of-the art in vibration energy harvesting for wireless, self-powered microsystems. Vibration-powered generators are typically, although not exclusively, inertial spring and mass systems. The characteristic equations for inertial-based generators are presented, along with the specific damping equations that relate to the three main transduction mechanisms employed to extract energy from the system. These transduction mechanisms are: piezoelectric, electromagnetic and electrostatic. Piezoelectric generators employ active materials that generate a charge when mechanically stressed. A comprehensive review of existing piezoelectric generators is presented, including impact coupled, resonant and human-based devices. Electromagnetic generators employ electromagnetic induction arising from the relative motion between a magnetic flux gradient and a conductor. Electromagnetic generators presented in the literature are reviewed including large scale discrete devices and wafer-scale integrated versions. Electrostatic generators utilize the relative movement between electrically isolated charged capacitor plates to generate energy. The work done against the electrostatic force between the plates provides the harvested energy. Electrostatic-based generators are reviewed under the classifications of in-plane overlap varying, in-plane gap closing and out-of-plane gap closing; the Coulomb force parametric generator and electret-based generators are also covered. The coupling factor of each transduction mechanism is discussed and all the devices presented in the literature are summarized in tables classified by transduction type; conclusions are drawn as to the suitability of the various techniques.

2,834 citations


"Base excited hybrid energy harvesti..." refers background in this paper

  • ...Microelectromechanical EM harvesters usually use planar coils and planar springs with permanent magnets [10]....

    [...]

  • ...A review on electromagnetic harvesters (EMH) can be found in [10]....

    [...]

Journal ArticleDOI
TL;DR: In this article, the authors proposed a microgenerator that generates electricity from mechanical energy when embedded in a vibrating medium, and the power produced is proportional to the cube of the frequency of vibration, and that the mass deflection should be as large as possible.
Abstract: Supplying power to remote microsystems that have no physical connection to the outside world is difficult, and using batteries is not always appropriate. A solution is offered by the device proposed in this paper, which generates electricity from mechanical energy when embedded in a vibrating medium. This microgenerator has dimensions of around 5 mm × 5 mm × 1 mm. Analysis predicts that the power produced is proportional to the cube of the frequency of vibration, and that to maximize power generation the mass deflection should be as large as possible. Power generation of 1 μW at 70 Hz and 0.1 mW at 330 Hz are predicted for a typical device, assuming a deflection of 50 μm.

1,326 citations

Journal ArticleDOI
TL;DR: In this paper, the authors presented a small (component volume 1 cm3, practical volume 1 5 cm3) electromagnetic generator utilizing discrete components and optimized for a low ambient vibration level based upon real application data.
Abstract: Vibration energy harvesting is receiving a considerable amount of interest as a means for powering wireless sensor nodes This paper presents a small (component volume 01 cm3, practical volume 015 cm3) electromagnetic generator utilizing discrete components and optimized for a low ambient vibration level based upon real application data The generator uses four magnets arranged on an etched cantilever with a wound coil located within the moving magnetic field Magnet size and coil properties were optimized, with the final device producing 46 µW in a resistive load of 4 k? from just 059 m s-2 acceleration levels at its resonant frequency of 52 Hz A voltage of 428 mVrms was obtained from the generator with a 2300 turn coil which has proved sufficient for subsequent rectification and voltage step-up circuitry The generator delivers 30% of the power supplied from the environment to useful electrical power in the load This generator compares very favourably with other demonstrated examples in the literature, both in terms of normalized power density and efficiency

1,313 citations


"Base excited hybrid energy harvesti..." refers background in this paper

  • ...For EM generators, macroscopic structures are made of one or several coils and magnet assembled in simple geometries [7], [8], many of which are studied in [9]....

    [...]

Journal ArticleDOI
TL;DR: This paper modeled, designed, and built small cantilever-based devices using piezoelectric materials that can scavenge power from low-level ambient vibration sources, and presents some new designs that can be tuned to the frequency of the host surface, thereby expanding the method's flexibility.
Abstract: Pervasive networks of wireless sensor and communication nodes have the potential to significantly impact society and create large market opportunities. For such networks to achieve their full potential, however, we must develop practical solutions for self-powering these autonomous electronic devices. We've modeled, designed, and built small cantilever-based devices using piezoelectric materials that can scavenge power from low-level ambient vibration sources. Given appropriate power conditioning and capacitive storage, the resulting power source is sufficient to support networks of ultra-low-power, peer-to-peer wireless nodes. These devices have a fixed geometry and - to maximize power output - we've individually designed them to operate as close as possible to the frequency of the driving surface on which they're mounted. In this paper, we describe these devices and present some new designs that can be tuned to the frequency of the host surface, thereby expanding the method's flexibility. We also discuss piezoelectric designs that use new geometries, some of which are microscale (approximately hundreds of microns).

1,036 citations


"Base excited hybrid energy harvesti..." refers background or methods in this paper

  • ...9, that a power density over 2000μW/cm3 is possible, which is quite impressive compared to the commercially available devices of the range 300−350μW/cm3 and some experimental devices of above 1500μW/cm3 [13]....

    [...]

  • ...The power densities that can be achieved in vibration based energy harvesting devices using conventional technologies is typically of range of 300−360μW/cm3[13]....

    [...]

Journal ArticleDOI
TL;DR: In this article, a review of the reported piezoelectric energy harvesting from vibration is presented, where various types of vibration devices, piezoceramics and mathematical modeling of vibrational energy harvesting are reviewed.
Abstract: This paper reviews energy harvesting technology from mechanical vibration. Recent advances on ultralow power portable electronic devices and wireless sensor network require limitless battery life for better performance. People searched for permanent portable power sources for advanced electronic devices. Energy is everywhere around us and the most important part in energy harvesting is energy transducer. Piezoelectric materials have high energy conversion ability from mechanical vibration. A great amount of researches have been conducted to develop simple and efficient energy harvesting devices from vibration by using piezoelectric materials. Representative piezoelectric materials can be categorized into piezoceramics and piezopolymers. This paper reviews key ideas and performances of the reported piezoelectric energy harvesting from vibration. Various types of vibration devices, piezoelectric materials and mathematical modeling of vibrational energy harvestings are reviewed.

901 citations


"Base excited hybrid energy harvesti..." refers background in this paper

  • ...Out of various technologies available, vibration based energy harvesting attracted more attentions [1], [2]....

    [...]