scispace - formally typeset
Search or ask a question
Journal ArticleDOI

Basic immunology may lead to translational therapeutic rationale: SARS-CoV-2 and rheumatic diseases.

TL;DR: Initial reports on the occurrence of autoimmune phenomena in the convalescence phase of SARS‐CoV‐2 infection suggests that the immunological consequences of the infection need to be strictly understood.
Abstract: COVID-19 pandemia is a major concern for patients and healthcare systems. The fear of infection by patients with concomitant rheumatic diseases (either adult or children) and connective tissue diseases is arising worldwide, because of their immunological background and immunological therapies. Analysing the basic biology of single diseases, the data suggest that there is an "immunological umbrella" that seems to protect against the infection, through IFN type 1 and NK cell function. To date, reports from China, United States and Europe did not reveal an higher risk of infection, either for rheumatoid arthritis, juvenile idiopathic arthritis nor for lupus erythematosus. Antimalarials, anti-IL6-Anti-IL6 receptor, anti-IL1, anti-GM-CSF receptor and JAK1/2/3 inhibitors, are under investigation in COVID-dedicated clinical trials to control the inflammation raised by SARS-CoV-2 infection. Initial reports on the occurrence of autoimmune phenomena in the convalescence phase of SARS-CoV-2 infection suggests that the immunological consequences of the infection need to be strictly understood. Reporting of the study conforms to broad EQUATOR guidelines (Simera et al January 2010 issue of EJCI).
Citations
More filters
01 Jan 2020
TL;DR: Prolonged viral shedding provides the rationale for a strategy of isolation of infected patients and optimal antiviral interventions in the future.
Abstract: Summary Background Since December, 2019, Wuhan, China, has experienced an outbreak of coronavirus disease 2019 (COVID-19), caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Epidemiological and clinical characteristics of patients with COVID-19 have been reported but risk factors for mortality and a detailed clinical course of illness, including viral shedding, have not been well described. Methods In this retrospective, multicentre cohort study, we included all adult inpatients (≥18 years old) with laboratory-confirmed COVID-19 from Jinyintan Hospital and Wuhan Pulmonary Hospital (Wuhan, China) who had been discharged or had died by Jan 31, 2020. Demographic, clinical, treatment, and laboratory data, including serial samples for viral RNA detection, were extracted from electronic medical records and compared between survivors and non-survivors. We used univariable and multivariable logistic regression methods to explore the risk factors associated with in-hospital death. Findings 191 patients (135 from Jinyintan Hospital and 56 from Wuhan Pulmonary Hospital) were included in this study, of whom 137 were discharged and 54 died in hospital. 91 (48%) patients had a comorbidity, with hypertension being the most common (58 [30%] patients), followed by diabetes (36 [19%] patients) and coronary heart disease (15 [8%] patients). Multivariable regression showed increasing odds of in-hospital death associated with older age (odds ratio 1·10, 95% CI 1·03–1·17, per year increase; p=0·0043), higher Sequential Organ Failure Assessment (SOFA) score (5·65, 2·61–12·23; p Interpretation The potential risk factors of older age, high SOFA score, and d-dimer greater than 1 μg/mL could help clinicians to identify patients with poor prognosis at an early stage. Prolonged viral shedding provides the rationale for a strategy of isolation of infected patients and optimal antiviral interventions in the future. Funding Chinese Academy of Medical Sciences Innovation Fund for Medical Sciences; National Science Grant for Distinguished Young Scholars; National Key Research and Development Program of China; The Beijing Science and Technology Project; and Major Projects of National Science and Technology on New Drug Creation and Development.

4,408 citations

Journal ArticleDOI
TL;DR: IL-6R inhibition appears to be a potential treatment strategy for severe SARS-CoV-2 pneumonia and intravenous Sarilumab seems a promising treatment approach showing, in the short term, an important clinical outcome and good safety.

63 citations


Cites background from "Basic immunology may lead to transl..."

  • ...Tocilizumab or Sarilumab) have been or are currently tested in the repression of excessive pro-inflammatory effects in the lung of SARS-CoV-2 pneumonia [14,15]....

    [...]

Journal ArticleDOI
TL;DR: In this article, a thorough, updated summary of COVID-19 pathogenesis and the therapeutic options available for this disease is presented, with an explanation of their modes of action and example drugs.
Abstract: The novel beta coronavirus (SARS-CoV-2, designated as COVID-19) that is responsible for severe acute respiratory syndrome has devastated the global economy and health care system. Since COVID-19 changed the definition of "normal" in ordinary life around the world, the development of effective therapeutics and preventive measures is desperately needed to fight SARS-CoV-2 infection and restore normalcy. A clear understanding of COVID-19 pathogenesis is crucial in providing the scientific rationale necessary to develop anti-COVID19 drugs and vaccines. According to the most recently published literature, COVID-19 pathogenesis was postulated to occur in three sequential phases: pulmonary, proinflammatory, and prothrombic. Herein, virus-host interactions, potential pathogenic mechanisms, and clinical manifestations are described for each phase. Additionally, based on this pathogenesis model, various therapeutic strategies involving current clinical trials are presented with an explanation of their modes of action and example drugs. This review is a thorough, updated summary of COVID-19 pathogenesis and the therapeutic options available for this disease.

52 citations

Journal ArticleDOI
TL;DR: In this paper, the authors found that the risk of SARS-CoV-2 infection in patients with a systemic autoimmune rheumatic disease (SARD) appears slightly higher compared to the general population and the course of COVID-19 disease does not seem to be very different.
Abstract: Autoimmune diseases and infections are often closely intertwined. Patients with autoimmune diseases are more susceptible to infections due to either active autoimmune disease or the medications used to treat them. Based on infections as environmental triggers of autoimmunity, an autoimmune response would also be expected in COVID-19. Although some studies have shown the occurance of autoantibodies and the possible development of autoimmune diseases after SARS-CoV-2 infection, current data suggest that the levels of autoantibodies following SARS-CoV-2 infection is comparable to that of some other known infections and that the autoantibodies might only be transient. The risk of SARS-CoV-2 infection in patients with a systemic autoimmune rheumatic disease (SARD) appears slightly higher compared to the general population and the course of COVID-19 disease does not seem to be very different, however, specific therapies such as glucocorticoids and anti-TNF might modulate the risk of hospitalization/death. Cytokine release syndrome is a severe complication in COVID-19. Many drugs used for the treatment of SARD are directly or indirectly targeting cytokines involved in the cytokine release syndrome, therefore it has been suggested that they could also be effective in COVID-19, but more evidence on the use of these medications for the treatment of COVID-19 is currently being collected.

12 citations

Journal ArticleDOI
TL;DR: The meta-analysis by Akiyama et al showing that out of 62 studies with over 300 000 patients with autoimmune diseases, glucocorticosteroids (GC) therapy was significantly associated with an increased risk of COVID-19, raises interest on the use of GC in the therapeutic approach to inflammatory pneumonia associated with SARS-CoV-2 infection.
Abstract: We read with great interest the meta-analysis by Akiyama et al showing that out of 62 studies with over 300 000 patients with autoimmune diseases, glucocorticosteroids (GC) therapy was significantly associated with an increased risk of COVID-19.1 These data raise interest on the use of GC in the therapeutic approach to inflammatory pneumonia associated with SARS-CoV-2 infection. A recent editorial entitled ‘Curing COVID-19’ in the October issue of the Lancet Infectious Disease discussed in fact the role of steroids to treat COVID-19 pneumonia. Dexamethasone is suggested by the WHO as part of the therapeutic approach.2 The evidence is that data on steroids are partly positive (RECOVERY and REMAP-CAP doi:10.1001/jama0.2020.17022) and partly negative (CAPE-COD-doi:10.1001/jama. 2020.16761), yet the meta-analysis of the randomised trials shows a statistical effect on mortality in very severe cases, with differences among the different steroids.3 The differences between steroids and standard of care treatment are significant, yet far away from solving the puzzle of the best therapy. Certainly, the inflammation occurring in SARS-CoV-2 pneumonia, certified by increased C-reactive protein (CRP), interleukin (IL)-6 and sometimes by ferritin, strongly suggests that GC might help to control the course of the disease. Yet recent data by Carsana et al 4 and Grasselli et al 5 suggest that pneumonitis may have at least two pathophysiology backgrounds and that ‘subsetting’ might …

5 citations

References
More filters
Journal ArticleDOI
TL;DR: During the first 2 months of the current outbreak, Covid-19 spread rapidly throughout China and caused varying degrees of illness, and patients often presented without fever, and many did not have abnormal radiologic findings.
Abstract: Background Since December 2019, when coronavirus disease 2019 (Covid-19) emerged in Wuhan city and rapidly spread throughout China, data have been needed on the clinical characteristics of...

22,622 citations

Journal ArticleDOI
TL;DR: Wang et al. as discussed by the authors used univariable and multivariable logistic regression methods to explore the risk factors associated with in-hospital death, including older age, high SOFA score and d-dimer greater than 1 μg/mL.

20,189 citations

Journal ArticleDOI
16 Apr 2020-Cell
TL;DR: It is demonstrated that SARS-CoV-2 uses the SARS -CoV receptor ACE2 for entry and the serine protease TMPRSS2 for S protein priming, and it is shown that the sera from convalescent SARS patients cross-neutralized Sars-2-S-driven entry.

15,362 citations

Journal ArticleDOI
TL;DR: This study evaluated the antiviral efficiency of five FAD-approved drugs including ribavirin, penciclovir, nitazoxanide, nafamostat, chloroquine and two well-known broad-spectrum antiviral drugs remdesivir and favipiravir against a clinical isolate of 2019-nCoV in vitro.
Abstract: Dear Editor, In December 2019, a novel pneumonia caused by a previously unknown pathogen emerged in Wuhan, a city of 11 million people in central China. The initial cases were linked to exposures in a seafood market in Wuhan. As of January 27, 2020, the Chinese authorities reported 2835 confirmed cases in mainland China, including 81 deaths. Additionally, 19 confirmed cases were identified in Hong Kong, Macao and Taiwan, and 39 imported cases were identified in Thailand, Japan, South Korea, United States, Vietnam, Singapore, Nepal, France, Australia and Canada. The pathogen was soon identified as a novel coronavirus (2019-nCoV), which is closely related to sever acute respiratory syndrome CoV (SARS-CoV). Currently, there is no specific treatment against the new virus. Therefore, identifying effective antiviral agents to combat the disease is urgently needed. An efficient approach to drug discovery is to test whether the existing antiviral drugs are effective in treating related viral infections. The 2019-nCoV belongs to Betacoronavirus which also contains SARS-CoV and Middle East respiratory syndrome CoV (MERS-CoV). Several drugs, such as ribavirin, interferon, lopinavir-ritonavir, corticosteroids, have been used in patients with SARS or MERS, although the efficacy of some drugs remains controversial. In this study, we evaluated the antiviral efficiency of five FAD-approved drugs including ribavirin, penciclovir, nitazoxanide, nafamostat, chloroquine and two well-known broad-spectrum antiviral drugs remdesivir (GS5734) and favipiravir (T-705) against a clinical isolate of 2019nCoV in vitro. Standard assays were carried out to measure the effects of these compounds on the cytotoxicity, virus yield and infection rates of 2019-nCoVs. Firstly, the cytotoxicity of the candidate compounds in Vero E6 cells (ATCC-1586) was determined by the CCK8 assay. Then, Vero E6 cells were infected with nCoV2019BetaCoV/Wuhan/WIV04/2019 at a multiplicity of infection (MOI) of 0.05 in the presence of varying concentrations of the test drugs. DMSO was used in the controls. Efficacies were evaluated by quantification of viral copy numbers in the cell supernatant via quantitative real-time RT-PCR (qRT-PCR) and confirmed with visualization of virus nucleoprotein (NP) expression through immunofluorescence microscopy at 48 h post infection (p.i.) (cytopathic effect was not obvious at this time point of infection). Among the seven tested drugs, high concentrations of three nucleoside analogs including ribavirin (half-maximal effective concentration (EC50)= 109.50 μM, halfcytotoxic concentration (CC50) > 400 μM, selectivity index (SI) > 3.65), penciclovir (EC50= 95.96 μM, CC50 > 400 μM, SI > 4.17) and favipiravir (EC50= 61.88 μM, CC50 > 400 μM, SI > 6.46) were required to reduce the viral infection (Fig. 1a and Supplementary information, Fig. S1). However, favipiravir has been shown to be 100% effective in protecting mice against Ebola virus challenge, although its EC50 value in Vero E6 cells was as high as 67 μM, suggesting further in vivo studies are recommended to evaluate this antiviral nucleoside. Nafamostat, a potent inhibitor of MERS-CoV, which prevents membrane fusion, was inhibitive against the 2019-nCoV infection (EC50= 22.50 μM, CC50 > 100 μM, SI > 4.44). Nitazoxanide, a commercial antiprotozoal agent with an antiviral potential against a broad range of viruses including human and animal coronaviruses, inhibited the 2019-nCoV at a low-micromolar concentration (EC50= 2.12 μM; CC50 > 35.53 μM; SI > 16.76). Further in vivo evaluation of this drug against 2019-nCoV infection is recommended. Notably, two compounds remdesivir (EC50= 0.77 μM; CC50 > 100 μM; SI > 129.87) and chloroquine (EC50= 1.13 μM; CC50 > 100 μM, SI > 88.50) potently blocked virus infection at low-micromolar concentration and showed high SI (Fig. 1a, b). Remdesivir has been recently recognized as a promising antiviral drug against a wide array of RNA viruses (including SARS/MERS-CoV) infection in cultured cells, mice and nonhuman primate (NHP) models. It is currently under clinical development for the treatment of Ebola virus infection. Remdesivir is an adenosine analogue, which incorporates into nascent viral RNA chains and results in pre-mature termination. Our time-ofaddition assay showed remdesivir functioned at a stage post virus entry (Fig. 1c, d), which is in agreement with its putative antiviral mechanism as a nucleotide analogue. Warren et al. showed that in NHP model, intravenous administration of 10mg/kg dose of remdesivir resulted in concomitant persistent levels of its active form in the blood (10 μM) and conferred 100% protection against Ebola virus infection. Our data showed that EC90 value of remdesivir against 2019-nCoV in Vero E6 cells was 1.76 μM, suggesting its working concentration is likely to be achieved in NHP. Our preliminary data (Supplementary information, Fig. S2) showed that remdesivir also inhibited virus infection efficiently in a human cell line (human liver cancer Huh-7 cells), which is sensitive to 2019-nCoV. Chloroquine, a widely-used anti-malarial and autoimmune disease drug, has recently been reported as a potential broadspectrum antiviral drug. Chloroquine is known to block virus infection by increasing endosomal pH required for virus/ cell fusion, as well as interfering with the glycosylation of cellular receptors of SARS-CoV. Our time-of-addition assay demonstrated that chloroquine functioned at both entry, and at postentry stages of the 2019-nCoV infection in Vero E6 cells (Fig. 1c, d). Besides its antiviral activity, chloroquine has an immune-modulating activity, which may synergistically enhance its antiviral effect in vivo. Chloroquine is widely distributed in the whole body, including lung, after oral administration. The EC90 value of chloroquine against the 2019-nCoV in Vero

5,660 citations

Journal ArticleDOI
TL;DR: In this cohort of patients hospitalized for severe Covid-19 who were treated with compassionate-use remdesivir, clinical improvement was observed in 36 of 53 patients, and Measurement of efficacy will require ongoing randomized, placebo-controlled trials of remdesavir therapy.
Abstract: Background Remdesivir, a nucleotide analogue prodrug that inhibits viral RNA polymerases, has shown in vitro activity against SARS-CoV-2. Methods We provided remdesivir on a compassionate-...

2,314 citations