scispace - formally typeset
Search or ask a question
Book ChapterDOI

Basic Substance Characteristics and Neuropathological Findings in Drug Abusers

01 Jan 2021-pp 23-87
TL;DR: In this article, the major psychoactive component, ∆9tetrahydrocannabinol (∆9-THC), interacts with specific CB receptors in the brain.
Abstract: Cannabis is the most frequently abused recreational drug worldwide. Its major psychoactive component, ∆9-tetrahydrocannabinol (∆9-THC), interacts with specific cannabinoid (CB) receptors in the brain. Until today distinct neuropathological alterations have not been described.
References
More filters
Journal ArticleDOI
TL;DR: It is considered premature to rename cannabinoid receptors after an endogenous agonist as is recommended by the International Union of Pharmacology Committee on Receptor Nomenclature and Drug Classification, because pharmacological evidence for the existence of additional types of cannabinoid receptor is emerging and other kinds of supporting evidence are still lacking.
Abstract: Two types of cannabinoid receptor have been discovered so far, CB(1) (2.1: CBD:1:CB1:), cloned in 1990, and CB(2) (2.1:CBD:2:CB2:), cloned in 1993. Distinction between these receptors is based on differences in their predicted amino acid sequence, signaling mechanisms, tissue distribution, and sensitivity to certain potent agonists and antagonists that show marked selectivity for one or the other receptor type. Cannabinoid receptors CB(1) and CB(2) exhibit 48% amino acid sequence identity. Both receptor types are coupled through G proteins to adenylyl cyclase and mitogen-activated protein kinase. CB(1) receptors are also coupled through G proteins to several types of calcium and potassium channels. These receptors exist primarily on central and peripheral neurons, one of their functions being to inhibit neurotransmitter release. Indeed, endogenous CB(1) agonists probably serve as retrograde synaptic messengers. CB(2) receptors are present mainly on immune cells. Such cells also express CB(1) receptors, albeit to a lesser extent, with both receptor types exerting a broad spectrum of immune effects that includes modulation of cytokine release. Of several endogenous agonists for cannabinoid receptors identified thus far, the most notable are arachidonoylethanolamide, 2-arachidonoylglycerol, and 2-arachidonylglyceryl ether. It is unclear whether these eicosanoid molecules are the only, or primary, endogenous agonists. Hence, we consider it premature to rename cannabinoid receptors after an endogenous agonist as is recommended by the International Union of Pharmacology Committee on Receptor Nomenclature and Drug Classification. Although pharmacological evidence for the existence of additional types of cannabinoid receptor is emerging, other kinds of supporting evidence are still lacking.

2,619 citations

Journal Article
TL;DR: The criteria for a high affinity, stereoselective, pharmacologically distinct cannabinoid receptor in brain tissue have been fulfilled.
Abstract: The determination and characterization of a cannabinoid receptor from brain are reported. A biologically active bicyclic cannabinoid analgetic CP-55,940 was tritium-labeled to high specific activity. Conditions for binding to rat brain P2 membranes and synaptosomes were established. The pH optimum was between 7 and 8, and specific binding could be eliminated by heating the membranes to 60 degrees. Binding to the P2 membranes was linear within the range of 10 to 50 micrograms of protein/ml. Specific binding (defined as total binding displaced by 1 microM delta 9-tetrahydrocannabinol (delta 9-THC) or 100 nM desacetyllevonantradol) was saturable. The Kd determined from Scatchard analysis was 133 pM, and the Bmax for rat cortical P2 membranes was 1.85 pmol/mg of protein. The Hill coefficient for [3H]CP-55,940 approximated 1, indicating that, under the conditions of assay, a single class of binding sites was determined that did not exhibit cooperativity. The binding was rapid (kon approximately 2.6 x 10(-4) pM-1 min-1) and reversible (Koff approximately 0.016 min-1) and (koff' greater than 0.06 min-1). The two Kd values estimated from the kinetic constants approximately 55 pM and exceeded 200 pM, respectively. The binding of the agonist ligand [3H]CP-55,940 was decreased by the nonhydrolyzable GTP analog guanylylimidodiphosphate. The guanine nucleotide induced a more rapid dissociation of the ligand from the binding site, consistent with an allosteric regulation of the putative receptor by a G protein. The binding was also sensitive to MgCl2 and CaCl2. Binding of [3H]CP-55,940 was displaced by cannabinoid drugs in the following order of potency: CP-55,940 greater than or equal to desacetyllevonantradol greater than 11-OH-delta 9-THC = delta 9-THC greater than cannabinol. Cannabidiol and cannabigerol displaced [3H]CP-55,940 by less than 50% at 1 microM concentrations. The (-)-isomer of CP-55,940 displaced with 50-fold greater potency than the (+)-isomer. This pharmacology is comparable to both the inhibition of adenylate cyclase in vitro and the analgetic activity of these compounds in vivo. The criteria for a high affinity, stereoselective, pharmacologically distinct cannabinoid receptor in brain tissue have been fulfilled.

2,242 citations

Journal ArticleDOI
TL;DR: There is not convincing evidence for an increase in postsynaptic DA receptors or in DA synthesis in animals sensitized to AMPH, but there is strong evidence to support the notion that behavioral sensitization is due to enhanced mesotelencephalic DA release, especially upon re-exposure to the drug.

2,208 citations

Journal ArticleDOI
TL;DR: The potencies of a series of natural and synthetic cannabinoids as competitors of [3H]CP 55,940 binding correlated closely with their relative potencies in several biological assays, suggesting that the receptor characterized in the in vitro assay is the same receptor that mediates behavioral and pharmacological effects of cannabinoids, including human subjective experience.
Abstract: [3H]CP 55,940, a radiolabeled synthetic cannabinoid, which is 10-100 times more potent in vivo than delta 9-tetrahydrocannabinol, was used to characterize and localize a specific cannabinoid receptor in brain sections. The potencies of a series of natural and synthetic cannabinoids as competitors of [3H]CP 55,940 binding correlated closely with their relative potencies in several biological assays, suggesting that the receptor characterized in our in vitro assay is the same receptor that mediates behavioral and pharmacological effects of cannabinoids, including human subjective experience. Autoradiography of cannabinoid receptors in brain sections from several mammalian species, including human, reveals a unique and conserved distribution; binding is most dense in outflow nuclei of the basal ganglia--the substantia nigra pars reticulata and globus pallidus--and in the hippocampus and cerebellum. Generally high densities in forebrain and cerebellum implicate roles for cannabinoids in cognition and movement. Sparse densities in lower brainstem areas controlling cardiovascular and respiratory functions may explain why high doses of delta 9-tetrahydrocannabinol are not lethal.

2,179 citations

Journal ArticleDOI
TL;DR: There is now sufficient evidence to warn young people that using cannabis could increase their risk of developing a psychotic illness later in life, although evidence for affective outcomes is less strong.

2,057 citations