scispace - formally typeset
Open AccessProceedings Article

Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift

Sergey Ioffe, +1 more
- Vol. 1, pp 448-456
Reads0
Chats0
TLDR
Applied to a state-of-the-art image classification model, Batch Normalization achieves the same accuracy with 14 times fewer training steps, and beats the original model by a significant margin.
Abstract
Training Deep Neural Networks is complicated by the fact that the distribution of each layer's inputs changes during training, as the parameters of the previous layers change. This slows down the training by requiring lower learning rates and careful parameter initialization, and makes it notoriously hard to train models with saturating nonlinearities. We refer to this phenomenon as internal covariate shift, and address the problem by normalizing layer inputs. Our method draws its strength from making normalization a part of the model architecture and performing the normalization for each training mini-batch. Batch Normalization allows us to use much higher learning rates and be less careful about initialization, and in some cases eliminates the need for Dropout. Applied to a state-of-the-art image classification model, Batch Normalization achieves the same accuracy with 14 times fewer training steps, and beats the original model by a significant margin. Using an ensemble of batch-normalized networks, we improve upon the best published result on ImageNet classification: reaching 4.82% top-5 test error, exceeding the accuracy of human raters.

read more

Content maybe subject to copyright    Report

Citations
More filters
Proceedings ArticleDOI

Deep Residual Learning for Image Recognition

TL;DR: In this article, the authors proposed a residual learning framework to ease the training of networks that are substantially deeper than those used previously, which won the 1st place on the ILSVRC 2015 classification task.
Posted Content

Deep Residual Learning for Image Recognition

TL;DR: This work presents a residual learning framework to ease the training of networks that are substantially deeper than those used previously, and provides comprehensive empirical evidence showing that these residual networks are easier to optimize, and can gain accuracy from considerably increased depth.
Book

Deep Learning

TL;DR: Deep learning as mentioned in this paper is a form of machine learning that enables computers to learn from experience and understand the world in terms of a hierarchy of concepts, and it is used in many applications such as natural language processing, speech recognition, computer vision, online recommendation systems, bioinformatics, and videogames.
Proceedings ArticleDOI

Densely Connected Convolutional Networks

TL;DR: DenseNet as mentioned in this paper proposes to connect each layer to every other layer in a feed-forward fashion, which can alleviate the vanishing gradient problem, strengthen feature propagation, encourage feature reuse, and substantially reduce the number of parameters.
Proceedings ArticleDOI

Rethinking the Inception Architecture for Computer Vision

TL;DR: In this article, the authors explore ways to scale up networks in ways that aim at utilizing the added computation as efficiently as possible by suitably factorized convolutions and aggressive regularization.
References
More filters
Journal Article

Adaptive Subgradient Methods for Online Learning and Stochastic Optimization

TL;DR: This work describes and analyze an apparatus for adaptively modifying the proximal function, which significantly simplifies setting a learning rate and results in regret guarantees that are provably as good as the best proximal functions that can be chosen in hindsight.
Proceedings Article

On the importance of initialization and momentum in deep learning

TL;DR: It is shown that when stochastic gradient descent with momentum uses a well-designed random initialization and a particular type of slowly increasing schedule for the momentum parameter, it can train both DNNs and RNNs to levels of performance that were previously achievable only with Hessian-Free optimization.
Posted Content

On the difficulty of training Recurrent Neural Networks

TL;DR: This paper proposes a gradient norm clipping strategy to deal with exploding gradients and a soft constraint for the vanishing gradients problem and validates empirically the hypothesis and proposed solutions.
Proceedings Article

Large Scale Distributed Deep Networks

TL;DR: This paper considers the problem of training a deep network with billions of parameters using tens of thousands of CPU cores and develops two algorithms for large-scale distributed training, Downpour SGD and Sandblaster L-BFGS, which increase the scale and speed of deep network training.
Book ChapterDOI

GradientBased Learning Applied to Document Recognition

TL;DR: Various methods applied to handwritten character recognition are reviewed and compared and Convolutional Neural Networks, that are specifically designed to deal with the variability of 2D shapes, are shown to outperform all other techniques.
Related Papers (5)