scispace - formally typeset
Search or ask a question
Journal ArticleDOI

Bayesian Networks in Fault Diagnosis

TL;DR: Current gaps and challenges on use of BNs in fault diagnosis in the last decades with focus on engineering systems are explored and several directions for future research are explored.
Abstract: Fault diagnosis is useful in helping technicians detect, isolate, and identify faults, and troubleshoot. Bayesian network (BN) is a probabilistic graphical model that effectively deals with various uncertainty problems. This model is increasingly utilized in fault diagnosis. This paper presents bibliographical review on use of BNs in fault diagnosis in the last decades with focus on engineering systems. This work also presents general procedure of fault diagnosis modeling with BNs; processes include BN structure modeling, BN parameter modeling, BN inference, fault identification, validation, and verification. The paper provides series of classification schemes for BNs for fault diagnosis, BNs combined with other techniques, and domain of fault diagnosis with BN. This study finally explores current gaps and challenges and several directions for future research.
Citations
More filters
Journal ArticleDOI
TL;DR: The authors reformulate diagnosis as a counterfactual inference task and derive new counterfactUAL diagnostic algorithms, showing that causal reasoning is a vital missing ingredient for applying machine learning to medical diagnosis.
Abstract: Machine learning promises to revolutionize clinical decision making and diagnosis. In medical diagnosis a doctor aims to explain a patient’s symptoms by determining the diseases causing them. However, existing machine learning approaches to diagnosis are purely associative, identifying diseases that are strongly correlated with a patients symptoms. We show that this inability to disentangle correlation from causation can result in sub-optimal or dangerous diagnoses. To overcome this, we reformulate diagnosis as a counterfactual inference task and derive counterfactual diagnostic algorithms. We compare our counterfactual algorithms to the standard associative algorithm and 44 doctors using a test set of clinical vignettes. While the associative algorithm achieves an accuracy placing in the top 48% of doctors in our cohort, our counterfactual algorithm places in the top 25% of doctors, achieving expert clinical accuracy. Our results show that causal reasoning is a vital missing ingredient for applying machine learning to medical diagnosis. In medical diagnosis a doctor aims to explain a patient’s symptoms by determining the diseases causing them, while existing diagnostic algorithms are purely associative. Here, the authors reformulate diagnosis as a counterfactual inference task and derive new counterfactual diagnostic algorithms.

247 citations

Journal ArticleDOI
TL;DR: The resilience value of an engineering system can be predicted using the proposed methodology, which provides implementation guidance for engineering planning, design, operation, construction, and management.

166 citations

Journal ArticleDOI
TL;DR: A bibliographic review of BNs that have been proposed for reliability evaluation in the last decades is presented, and a few upcoming research directions that are of interest to reliability researchers are identified.
Abstract: The Bayesian network (BN) is a powerful model for probabilistic knowledge representation and inference and is increasingly used in the field of reliability evaluation. This paper presents a bibliographic review of BNs that have been proposed for reliability evaluation in the last decades. Studies are classified from the perspective of the objects of reliability evaluation, i.e., hardware, structures, software, and humans. For each classification, the construction and validation of a BN-based reliability model are emphasized. The general procedural steps for BN-based reliability evaluation, including BN structure modeling, BN parameter modeling, BN inference, and model verification and validation, are investigated. Current gaps and challenges in reliability evaluation with BNs are explored, and a few upcoming research directions that are of interest to reliability researchers are identified.

165 citations


Cites background from "Bayesian Networks in Fault Diagnosi..."

  • ...Bayesian networks (BNs) are important probabilistic directed acyclic graphical models that can effectively characterize and analyze uncertainty, which is a problem commonly encountered in real-world domains, and handle state space explosion problems [3]....

    [...]

Journal ArticleDOI
TL;DR: The outcome of this review shows that data-driven based approaches are more promising for the FDD process of large-scale HVAC systems than model-based and knowledge-based ones.

156 citations

Journal ArticleDOI
TL;DR: An end-to-end model for multistep machine speed prediction that comprises a deep convolutional LSTM encoder–decoder architecture is proposed and extensive empirical analyses demonstrate the value of the proposed method when compared with the state-of-the-art predictive models.
Abstract: Time-series forecasting is applied to many areas of smart factories, including machine health monitoring, predictive maintenance, and production scheduling. In smart factories, machine speed prediction can be used to dynamically adjust production processes based on different system conditions, optimize production throughput, and minimize energy consumption. However, making accurate data-driven machine speed forecasts is challenging. Given the complex nature of industrial manufacturing process data, predictive models that are robust to noise and can capture the temporal and spatial distributions of input time-series signals are prerequisites for accurate forecasting. Motivated by recent deep learning studies in smart manufacturing, in this article, we propose an end-to-end model for multistep machine speed prediction. The model comprises a deep convolutional LSTM encoder–decoder architecture. Extensive empirical analyses using real-world data obtained from a metal packaging plant in the United Kingdom demonstrate the value of the proposed method when compared with the state-of-the-art predictive models.

133 citations


Cites methods from "Bayesian Networks in Fault Diagnosi..."

  • ...Consequently, both supervised and unsupervised learning approaches, such as principal components analysis [2], [3], artificial neural networks (ANN) [4], Bayes network [5], and regression trees [6] have been applied to manufacturing process optimization....

    [...]

References
More filters
Book
01 Jan 1988
TL;DR: Probabilistic Reasoning in Intelligent Systems as mentioned in this paper is a complete and accessible account of the theoretical foundations and computational methods that underlie plausible reasoning under uncertainty, and provides a coherent explication of probability as a language for reasoning with partial belief.
Abstract: From the Publisher: Probabilistic Reasoning in Intelligent Systems is a complete andaccessible account of the theoretical foundations and computational methods that underlie plausible reasoning under uncertainty. The author provides a coherent explication of probability as a language for reasoning with partial belief and offers a unifying perspective on other AI approaches to uncertainty, such as the Dempster-Shafer formalism, truth maintenance systems, and nonmonotonic logic. The author distinguishes syntactic and semantic approaches to uncertainty—and offers techniques, based on belief networks, that provide a mechanism for making semantics-based systems operational. Specifically, network-propagation techniques serve as a mechanism for combining the theoretical coherence of probability theory with modern demands of reasoning-systems technology: modular declarative inputs, conceptually meaningful inferences, and parallel distributed computation. Application areas include diagnosis, forecasting, image interpretation, multi-sensor fusion, decision support systems, plan recognition, planning, speech recognition—in short, almost every task requiring that conclusions be drawn from uncertain clues and incomplete information. Probabilistic Reasoning in Intelligent Systems will be of special interest to scholars and researchers in AI, decision theory, statistics, logic, philosophy, cognitive psychology, and the management sciences. Professionals in the areas of knowledge-based systems, operations research, engineering, and statistics will find theoretical and computational tools of immediate practical use. The book can also be used as an excellent text for graduate-level courses in AI, operations research, or applied probability.

15,671 citations

Book
01 Jan 2001
TL;DR: The book introduces probabilistic graphical models and decision graphs, including Bayesian networks and influence diagrams, and presents a thorough introduction to state-of-the-art solution and analysis algorithms.
Abstract: Probabilistic graphical models and decision graphs are powerful modeling tools for reasoning and decision making under uncertainty. As modeling languages they allow a natural specification of problem domains with inherent uncertainty, and from a computational perspective they support efficient algorithms for automatic construction and query answering. This includes belief updating, finding the most probable explanation for the observed evidence, detecting conflicts in the evidence entered into the network, determining optimal strategies, analyzing for relevance, and performing sensitivity analysis. The book introduces probabilistic graphical models and decision graphs, including Bayesian networks and influence diagrams. The reader is introduced to the two types of frameworks through examples and exercises, which also instruct the reader on how to build these models. The book is a new edition of Bayesian Networks and Decision Graphs by Finn V. Jensen. The new edition is structured into two parts. The first part focuses on probabilistic graphical models. Compared with the previous book, the new edition also includes a thorough description of recent extensions to the Bayesian network modeling language, advances in exact and approximate belief updating algorithms, and methods for learning both the structure and the parameters of a Bayesian network. The second part deals with decision graphs, and in addition to the frameworks described in the previous edition, it also introduces Markov decision processes and partially ordered decision problems. The authors also provide a well-founded practical introduction to Bayesian networks, object-oriented Bayesian networks, decision trees, influence diagrams (and variants hereof), and Markov decision processes. give practical advice on the construction of Bayesian networks, decision trees, and influence diagrams from domain knowledge. give several examples and exercises exploiting computer systems for dealing with Bayesian networks and decision graphs. present a thorough introduction to state-of-the-art solution and analysis algorithms. The book is intended as a textbook, but it can also be used for self-study and as a reference book.

4,566 citations


"Bayesian Networks in Fault Diagnosi..." refers background in this paper

  • ...ject is fragment generated by instantiating the class [96]....

    [...]

Journal Article
TL;DR: Big data, the authors write, is far more powerful than the analytics of the past, and executives can measure and therefore manage more precisely than ever before, and make better predictions and smarter decisions.
Abstract: Big data, the authors write, is far more powerful than the analytics of the past. Executives can measure and therefore manage more precisely than ever before. They can make better predictions and smarter decisions. They can target more-effective interventions in areas that so far have been dominated by gut and intuition rather than by data and rigor. The differences between big data and analytics are a matter of volume, velocity, and variety: More data now cross the internet every second than were stored in the entire internet 20 years ago. Nearly real-time information makes it possible for a company to be much more agile than its competitors. And that information can come from social networks, images, sensors, the web, or other unstructured sources. The managerial challenges, however, are very real. Senior decision makers have to learn to ask the right questions and embrace evidence-based decision making. Organizations must hire scientists who can find patterns in very large data sets and translate them into useful business information. IT departments have to work hard to integrate all the relevant internal and external sources of data. The authors offer two success stories to illustrate how companies are using big data: PASSUR Aerospace enables airlines to match their actual and estimated arrival times. Sears Holdings directly analyzes its incoming store data to make promotions much more precise and faster.

3,616 citations

Journal ArticleDOI
TL;DR: This three part series of papers is to provide a systematic and comparative study of various diagnostic methods from different perspectives and broadly classify fault diagnosis methods into three general categories and review them in three parts.

2,263 citations


"Bayesian Networks in Fault Diagnosi..." refers background in this paper

  • ...In general, fault diagnosis approaches can be classified into three categories: model-based [1], [2], signal-based [3]–[5], and...

    [...]

Journal ArticleDOI
TL;DR: The three-part survey paper aims to give a comprehensive review of real-time fault diagnosis and fault-tolerant control, with particular attention on the results reported in the last decade.
Abstract: With the continuous increase in complexity and expense of industrial systems, there is less tolerance for performance degradation, productivity decrease, and safety hazards, which greatly necessitates to detect and identify any kinds of potential abnormalities and faults as early as possible and implement real-time fault-tolerant operation for minimizing performance degradation and avoiding dangerous situations. During the last four decades, fruitful results have been reported about fault diagnosis and fault-tolerant control methods and their applications in a variety of engineering systems. The three-part survey paper aims to give a comprehensive review of real-time fault diagnosis and fault-tolerant control, with particular attention on the results reported in the last decade. In this paper, fault diagnosis approaches and their applications are comprehensively reviewed from model- and signal-based perspectives, respectively.

2,026 citations


"Bayesian Networks in Fault Diagnosi..." refers background in this paper

  • ...proach uses detected signals to diagnose possible abnormalities and faults by comparing detected signals with prior information of normal industrial systems [9]....

    [...]