scispace - formally typeset
Search or ask a question
Journal ArticleDOI

Before-after field study of effects of wind turbine noise on polysomnographic sleep parameters.

01 Aug 2016-Noise & Health (Medknow Publications)-Vol. 18, Iss: 83, pp 194-205
TL;DR: The result of this study based on advanced sleep recording methodology together with extensive noise measurements in an ecologically valid setting cautiously suggests that there are no major changes in the sleep of participants who host new industrial WTs in their community.
Abstract: Wind is considered one of the most advantageous alternatives to fossil energy because of its low operating cost and extensive availability. However, alleged health-related effects of exposure to wind turbine (WT) noise have attracted much public attention and various symptoms, such as sleep disturbance, have been reported by residents living close to wind developments. Prospective cohort study with synchronous measurement of noise and sleep physiologic signals was conducted to explore the possibility of sleep disturbance in people hosting new industrial WTs in Ontario, Canada, using a pre and post-exposure design. Objective and subjective sleep data were collected through polysomnography (PSG), the gold standard diagnostic test, and sleep diary. Sixteen participants were studied before and after WT installation during two consecutive nights in their own bedrooms. Both audible and infrasound noises were also concurrently measured inside the bedroom of each participant. Different noise exposure parameters were calculated (LAeq, LZeq) and analyzed in relation to whole-night sleep parameters. Results obtained from PSG show that sleep parameters were not significantly changed after exposure. However, reported sleep qualities were significantly (P = 0.008) worsened after exposure. Average noise levels during the exposure period were low to moderate and the mean of inside noise levels did not significantly change after exposure. The result of this study based on advanced sleep recording methodology together with extensive noise measurements in an ecologically valid setting cautiously suggests that there are no major changes in the sleep of participants who host new industrial WTs in their community. Further studies with a larger sample size and including comprehensive single-event analyses are warranted.
Citations
More filters
Journal ArticleDOI
TL;DR: In this article, the authors conduct a review of the evidence surrounding the optimal characteristics for the sleep environment in the categories of noise, temperature, lighting, and air quality in order to provide specific recommendations for each of these components.

77 citations


Cites result from "Before-after field study of effects..."

  • ...Similarly, a study that compared EEGmeasured sleep before and after installation of wind turbines in a neighborhood found no differences in objective or subjective sleep outcomes (category 1A), however, the noise exposure in that study was the same in both conditions (37 dBA, [37]....

    [...]

Journal ArticleDOI
TL;DR: In this paper, a narrative review of observational and experimental studies was conducted to assess the association between exposure to wind turbine sound and its components and health effects in the general population, concluding that wind turbines lead to a higher percentage of highly annoyed when compared to other sound sources.
Abstract: A narrative review of observational and experimental studies was conducted to assess the association between exposure to wind turbine sound and its components and health effects in the general population. Literature databases Scopus, Medline and Embase and additional bibliographic sources such as reference sections of key publications and journal databases were systematically searched for peer-reviewed studies published from 2009 to 2017. For the period until early 2015 only reviews were included, while for the period between January 2015 and January 2017 all relevant publications were screened. Ten reviews and 22 studies met the inclusion criteria. Most studies examined subjective annoyance as the primary outcome, indicating an association between exposure levels and the percentage highly annoyed. Sound from wind turbines leads to a higher percentage of highly annoyed when compared to other sound sources. Annoyance due to aspects, like shadow flicker, the visual (in) appropriateness in the landscape and blinking lights, can add to the noise annoyance. There is no evidence of a specific effect of the low-frequency component nor of infrasound. There are indications that the rhythmic pressure pulses on a building can lead to additional annoyance indoors. Personal characteristics such as noise sensitivity, privacy issues and social acceptance, benefits and attitudes, the local situation and the conditions of planning a wind farm also play a role in reported annoyance. Less data are available to evaluate the effects of wind turbines on sleep and long-term health effects. Sleep disturbance as well as other health effects in the vicinity of wind turbines was found to be related to annoyance, rather than directly to exposure.

57 citations

Journal ArticleDOI
TL;DR: In this paper, the authors combined the methodology of stress psychology with noise measurement to an integrated approach to better understand causes and effects of wind turbine (WT) noise, and found that more residents complained about physical and psychological symptoms due to traffic noise (16%) than to WT noise (10%, two years later 7%).

45 citations

Journal ArticleDOI
TL;DR: There is an extensive and diverse body of evidence around health impacts of wind turbines in residential settings, showing particularly noise consequences concerning increased noise annoyance with its complex pathways; no relationship between wind turbine noise and stress effects and biophysiological variables of sleep; and heterogeneous findings concerning sleep disturbance, quality of life, as well as mental health problems.

35 citations

Journal ArticleDOI
TL;DR: In this paper, the psychophysiological mechanisms that underlie sleep disturbance in response to noise, review current evidence regarding the effects of wind farm noise on sleep, evaluate the quality of existing evidence and identify evolving research in this area.
Abstract: Adequate sleep is important for good health and well-being, and inadequate sleep leads to impaired attention and performance. Persistent poor sleep is also associated with cognitive and metabolic impairment, cardiovascular problems and diminished psychological well-being. Recent growth in wind farm developments has been associated with community complaints regarding sleep disturbance, annoyance and a range of health issues that some attribute to wind farms. Wind turbines create aerodynamic and mechanical noise that, if sufficiently loud, has the potential to disturb residents’ sleep, particularly for those living in close proximity. According to the World Health Organisation (WHO), noise effects on sleep are expected to occur with outside noise levels > 40 dB (A). On the other hand, the WHO guidelines also state that “when prominent low-frequency components are present, measures based on A-weighting are inappropriate”, so uncertainty remains regarding which alternative noise measures and noise limits are most appropriate to mitigate community impacts of wind farm noise on sleep. In Australia, dwellings are typically located > 1 km from the nearest wind turbine where wind farm noise becomes more biased towards lower frequencies ( $$\le $$ 200 Hz) at low sound pressure levels ( $$<\sim $$ 40 dB (A) outside) that may or may not be audible inside a dwelling. Nevertheless, as with any environmental noise, wind farm noise has the potential to disturb sleep, via frequent physiological activation responses and arousals affecting the micro-structure of sleep, and the overall macro-structure of sleep, including total sleep time potentially reduced by difficulty falling asleep and returning to sleep following awakenings for whatever reason. Over time, chronic insomnia could potentially develop in individuals with greater sensory acuity and/or those prone to annoyance from environmental noise. However, it is unclear if and how much sleep is disturbed by the relatively low sound pressure levels relevant to wind turbine noise. Good empirical evidence to investigate these plausible mechanisms is sparse. In this paper, we describe the psychophysiological mechanisms that underlie sleep disturbance in response to noise, review current evidence regarding the effects of wind farm noise on sleep, evaluate the quality of existing evidence and identify evolving research in this area.

29 citations

References
More filters
Journal ArticleDOI
TL;DR: The importance of adequate noise prevention and mitigation strategies for public health is stressed, as Observational and experimental studies have shown that noise exposure leads to annoyance, disturbs sleep and causes daytime sleepiness.

1,189 citations

Journal ArticleDOI
TL;DR: The electroencephalographic records from 43 subjects who slept for four consecutive nights in a laboratory environment showed that the first night of laboratory sleep contains more awake periods and less Stage I-rapid eye movement sleep.
Abstract: The electroencephalographic records from 43 subjects who slept for four consecutive nights in a laboratory environment were studied in an effort to describe the First Night Effect. These records showed that the first night of laboratory sleep contains more awake periods and less Stage I-rapid eye movement sleep. There is a delay in the onset of Stages IV and I-REM and the sleep is more changeable. These effects rapidly adapt out by the second night of sleep.

1,094 citations


"Before-after field study of effects..." refers background in this paper

  • ...Sleep recordings obtained at home using portable PSG also has advantages because sleep patterns in the laboratory may not be representative of typical sleep as participants must adapt to the unfamiliar environment.([11]) Testing location is also important when studying the effects of environmental noise on sleep, as people may adapt to noise in their home setting....

    [...]

01 Jan 2013
TL;DR: In this paper, the authors stress the importance of adequate noise prevention and mitigation strategies for public health and stress that noise exposure leads to annoyance, disturbs sleep and causes daytime sleepiness, aff ects patient outcomes and staff performance in hospitals, increases the occurrence of hypertension and cardiovascular disease, and impairs cognitive performance in schoolchildren.
Abstract: Noise is pervasive in everyday life and can cause both auditory and non-auditory health eff ects. Noise-induced hearing loss remains highly prevalent in occupational settings, and is increasingly caused by social noise exposure (eg, through personal music players). Our understanding of molecular mechanisms involved in noise-induced haircell and nerve damage has substantially increased, and preventive and therapeutic drugs will probably become available within 10 years. Evidence of the non-auditory eff ects of environmental noise exposure on public health is growing. Observational and experimental studies have shown that noise exposure leads to annoyance, disturbs sleep and causes daytime sleepiness, aff ects patient outcomes and staff performance in hospitals, increases the occurrence of hypertension and cardiovascular disease, and impairs cognitive performance in schoolchildren. In this Review, we stress the importance of adequate noise prevention and mitigation strategies for public health.

942 citations

Trending Questions (1)
How to track sleep hours in noise Colorfit Pro 2?

The result of this study based on advanced sleep recording methodology together with extensive noise measurements in an ecologically valid setting cautiously suggests that there are no major changes in the sleep of participants who host new industrial WTs in their community.