scispace - formally typeset
Open AccessJournal ArticleDOI

Bendable, low-loss Topas fibers for the terahertz frequency range

Reads0
Chats0
TLDR
Near-field, frequency-resolved characterization with high spatial resolution of the amplitude and phase of the modal structure proves that the fiber is single-moded over a wide frequency range, and the authors see the onset of higher-order modes at high frequencies as well as indication of microporous guiding at low frequencies and high porosity of the fiber.
Abstract
We report on a new class of polymer photonic crystal fibers for low-loss guidance of THz radiation. The use of the cyclic olefin copolymer Topas, in combination with advanced fabrication technology, results in bendable THz fibers with unprecedented low loss and low material dispersion in the THz regime.We demonstrate experimentally how the dispersion may be engineered by fabricating both high- and low-dispersion fibers with zero-dispersion frequency in the regime 0.5-0.6 THz. Near-field, frequencyresolved characterization with high spatial resolution of the amplitude and phase of the modal structure proves that the fiber is single-moded over a wide frequency range, and we see the onset of higher-order modes at high frequencies as well as indication of microporous guiding at low frequencies and high porosity of the fiber. Transmission spectroscopy demonstrates low-loss propagation (< 0.1 dB/cm loss at 0.6 THz) over a wide frequency range.

read more

Content maybe subject to copyright    Report

Citations
More filters
Journal ArticleDOI

Terahertz spectroscopy and imaging – Modern techniques and applications

TL;DR: The terahertz time-domain spectroscopy (THz-TDS) as discussed by the authors is a new spectroscopic technique based on coherent and time-resolved detection of the electric field of ultrashort radiation bursts.
Journal ArticleDOI

The 2017 terahertz science and technology roadmap

TL;DR: The 2017 roadmap of terahertz frequency electromagnetic radiation (100 GHz-30 THz) as discussed by the authors provides a snapshot of the present state of THz science and technology in 2017, and provides an opinion on the challenges and opportunities that the future holds.
Journal ArticleDOI

Broadband terahertz characterization of the refractive index and absorption of some important polymeric and organic electro-optic materials

TL;DR: In this paper, the authors report broad bandwidth, 0.1-10 THz time-domain spectroscopy of linear and electro-optic polymers for broadband THz applications.
Journal ArticleDOI

Terahertz dielectric waveguides

TL;DR: Several classes of nonplanar metallic and dielectric waveguides have been proposed in the literature for guidance of terahertz (THz) or T-ray radiation.
References
More filters
Journal ArticleDOI

Cutting-edge terahertz technology

TL;DR: An overview of the status of the terahertz technology, its uses and its future prospects are presented in this article, with a focus on the use of the waveband in a wide range of applications.
Journal ArticleDOI

Endlessly single-mode photonic crystal fiber.

TL;DR: An effective-index model confirms that an all-silica optical fiber made by embedding a central core in a two-dimensional photonic crystal with a micrometer-spaced hexagonal array of air holes can be single mode for any wavelength.
Journal ArticleDOI

Far-infrared time-domain spectroscopy with terahertz beams of dielectrics and semiconductors

TL;DR: In this paper, the authors measured the far-infrared absorption and dispersion from 0.2 to 2 THz of the crystalline dielectrics sapphire and quartz, fused silica, and the semiconductors silicon, gallium arsenide, and germanium.
Journal ArticleDOI

Metal wires for terahertz wave guiding

TL;DR: It is shown how a simple waveguide, namely a bare metal wire, can be used to transport terahertz pulses with virtually no dispersion, low attenuation, and with remarkable structural simplicity.
Journal ArticleDOI

Generation and detection of terahertz pulses from biased semiconductor antennas

TL;DR: In this article, a simple model based on the Drude-Lorentz theory of carrier transport was proposed to account for the details of the ultrashort terahertz pulses radiated from small photoconductive semiconductor antennas.
Related Papers (5)