scispace - formally typeset
Search or ask a question
Journal ArticleDOI

Beneficial Effects of Green Tea EGCG on Skin Wound Healing: A Comprehensive Review.

11 Oct 2021-Molecules (Multidisciplinary Digital Publishing Institute)-Vol. 26, Iss: 20, pp 6123
TL;DR: In this article, a review about the effects of EGCG and its wound dressings on skin for wound healing is presented. And the benefits of using EGCGs to promote skin wound healing and prevent scar formation is discussed.
Abstract: Epigallocatechin gallate (EGCG) is associated with various health benefits. In this review, we searched current work about the effects of EGCG and its wound dressings on skin for wound healing. Hydrogels, nanoparticles, micro/nanofiber networks and microneedles are the major types of EGCG-containing wound dressings. The beneficial effects of EGCG and its wound dressings at different stages of skin wound healing (hemostasis, inflammation, proliferation and tissue remodeling) were summarized based on the underlying mechanisms of antioxidant, anti-inflammatory, antimicrobial, angiogenesis and antifibrotic properties. This review expatiates on the rationale of using EGCG to promote skin wound healing and prevent scar formation, which provides a future clinical application direction of EGCG.
Citations
More filters
Journal ArticleDOI
TL;DR: In this paper , an injectable self-healing hydrogel with inherent antibacterial activity was fabricated based on the dynamic covalent bond formation between boronic acid and catechol groups in quaternized chitosan as building blocks in conjunct with the in-situ encapsulation of epigallocatechin-3-gallate (EGCG, a green tea derivative).

24 citations

Journal ArticleDOI
TL;DR: This review comprehensively covers different strategies such as structural modifications, nano-carriers as efficient drug delivery systems, synergistic studies with other bioactivities to improve the chemico-biological aspects of EGCG for its enhanced pharmacokinetics and pharmacological properties, eventually enhancing its therapeutic potentials.
Abstract: Natural products have been a bedrock for drug discovery for decades. (-)-Epigallocatechin-3-gallate (EGCG) is one of the widely studied natural polyphenolic compounds derived from green tea. It is the key component believed to be responsible for the medicinal value of green tea. Significant studies implemented in in vitro, in cellulo, and in vivo models have suggested its anti-oxidant, anti-cancer, anti-diabetic, anti-inflammatory, anti-microbial, neuroprotective activities etc. Despite having such a wide array of therapeutic potential and promising results in preclinical studies, its applicability to humans has encountered with rather limited success largely due to the poor bioavailability, poor membrane permeability, rapid metabolic clearance and lack of stability of EGCG. Therefore, novel techniques are warranted to address those limitations so that EGCG or its modified analogs can be used in the clinical setup. This review comprehensively covers different strategies such as structural modifications, nano-carriers as efficient drug delivery systems, synergistic studies with other bioactivities to improve the chemico-biological aspects (e.g., stability, bioavailability, permeability, etc.) of EGCG for its enhanced pharmacokinetics and pharmacological properties, eventually enhancing its therapeutic potentials. We think this review article will serve as a strong platform with comprehensive literature on the development of novel techniques to improve the bioavailability of EGCG so that it can be translated to the clinical applications.

15 citations

Journal ArticleDOI
TL;DR: In this paper , carboxymethyl chitosan - sodium alginate (CMCS-SA) nanoparticles (NPs) stabilized Pickering emulsions, poloxamer 407 (PLX), and curcumin (CUR).

14 citations

Journal ArticleDOI
TL;DR: This review describes the catechin skin delivery approaches based on nanomedicine for treating skin disorders and provides in-depth description of how nanoparticles effectively improve the skin absorption of tea catechins and related compounds, such as caffeine.
Abstract: Tea catechins are a group of flavonoids that show many bioactivities. Catechins have been extensively reported as a potential treatment for skin disorders, including skin cancers, acne, photoaging, cutaneous wounds, scars, alopecia, psoriasis, atopic dermatitis, and microbial infection. In particular, there has been an increasing interest in the discovery of cosmetic applications using catechins as the active ingredient because of their antioxidant and anti-aging activities. However, active molecules with limited lipophilicity have difficulty penetrating the skin barrier, resulting in low bioavailability. Nevertheless, topical application is a convenient method for delivering catechins into the skin. Nanomedicine offers an opportunity to improve the delivery efficiency of tea catechins and related compounds. The advantages of catechin-loaded nanocarriers for topical application include high catechin loading efficiency, sustained or prolonged release, increased catechin stability, improved bioavailability, and enhanced accumulation or targeting to the nidus. Further, various types of nanoparticles, including liposomes, niosomes, micelles, lipid-based nanoparticles, polymeric nanoparticles, liquid crystalline nanoparticles, and nanocrystals, have been employed for topical catechin delivery. These nanoparticles can improve catechin permeation via close skin contact, increased skin hydration, skin structure disorganization, and follicular uptake. In this review, we describe the catechin skin delivery approaches based on nanomedicine for treating skin disorders. We also provide an in-depth description of how nanoparticles effectively improve the skin absorption of tea catechins and related compounds, such as caffeine. Furthermore, we summarize the possible future applications and the limitations of nanocarriers for topical delivery at the end of this review article.

11 citations

Journal ArticleDOI
TL;DR: In this article , an injectable and tissue adhesive EGCG-laden hydrogel depot (EGCG HYPOT) was designed to achieve anti-inflammatory and antioxidative effects via smart delivery of EGCGs.

10 citations

References
More filters
Journal ArticleDOI
TL;DR: The factors discussed include oxygenation, infection, age and sex hormones, stress, diabetes, obesity, medications, alcoholism, smoking, and nutrition, which may lead to therapeutics that improve wound healing and resolve impaired wounds.
Abstract: Wound healing, as a normal biological process in the human body, is achieved through four precisely and highly programmed phases: hemostasis, inflammation, proliferation, and remodeling For a wound to heal successfully, all four phases must occur in the proper sequence and time frame Many factors can interfere with one or more phases of this process, thus causing improper or impaired wound healing This article reviews the recent literature on the most significant factors that affect cutaneous wound healing and the potential cellular and/or molecular mechanisms involved The factors discussed include oxygenation, infection, age and sex hormones, stress, diabetes, obesity, medications, alcoholism, smoking, and nutrition A better understanding of the influence of these factors on repair may lead to therapeutics that improve wound healing and resolve impaired wounds

3,678 citations

Journal ArticleDOI
TL;DR: Although the intracellular transduction of the Notch signal is remarkably simple, with no secondary messengers, this pathway functions in an enormous diversity of developmental processes and its dysfunction is implicated in many cancers.
Abstract: A small number of signalling pathways are used iteratively to regulate cell fates, cell proliferation and cell death in development. Notch is the receptor in one such pathway, and is unusual in that most of its ligands are also transmembrane proteins; therefore signalling is restricted to neighbouring cells. Although the intracellular transduction of the Notch signal is remarkably simple, with no secondary messengers, this pathway functions in an enormous diversity of developmental processes and its dysfunction is implicated in many cancers.

2,450 citations

Journal ArticleDOI
TL;DR: A detailed analysis of wound microbiology, together with current opinion and controversies regarding wound assessment and treatment, has attempted to capture and address microbiological aspects that are critical to the successful management of microorganisms in wounds.
Abstract: The majority of dermal wounds are colonized with aerobic and anaerobic microorganisms that originate predominantly from mucosal surfaces such as those of the oral cavity and gut. The role and significance of microorganisms in wound healing has been debated for many years. While some experts consider the microbial density to be critical in predicting wound healing and infection, others consider the types of microorganisms to be of greater importance. However, these and other factors such as microbial synergy, the host immune response, and the quality of tissue must be considered collectively in assessing the probability of infection. Debate also exists regarding the value of wound sampling, the types of wounds that should be sampled, and the sampling technique required to generate the most meaningful data. In the laboratory, consideration must be given to the relevance of culturing polymicrobial specimens, the value in identifying one or more microorganisms, and the microorganisms that should be assayed for antibiotic susceptibility. Although appropriate systemic antibiotics are essential for the treatment of deteriorating, clinically infected wounds, debate exists regarding the relevance and use of antibiotics (systemic or topical) and antiseptics (topical) in the treatment of nonhealing wounds that have no clinical signs of infection. In providing a detailed analysis of wound microbiology, together with current opinion and controversies regarding wound assessment and treatment, this review has attempted to capture and address microbiological aspects that are critical to the successful management of microorganisms in wounds.

1,748 citations

Journal ArticleDOI
TL;DR: The history of dressings from its earliest inception to the current status is traced and the advantage and limitations of the dressing materials are discussed.
Abstract: Wound healing is a dynamic and complex process which requires suitable environment to promote healing process. With the advancement in technology, more than 3000 products have been developed to treat different types of wounds by targeting various aspects of healing process. The present review traces the history of dressings from its earliest inception to the current status and also discusses the advantage and limitations of the dressing materials.

883 citations

Journal ArticleDOI
TL;DR: The intimate dialogue between the (myo)fibroblasts and their microenvironment represents a fascinating domain that must be better understood in order not only to characterize new therapeutic targets and drugs able to prevent or treat pathological developments but also to interfere with skin alterations observed during normal aging or premature aging induced by a deleterious environment.
Abstract: (Myo)fibroblasts are key players for maintaining skin homeostasis and for orchestrating physiological tissue repair. (Myo)fibroblasts are embedded in a sophisticated extracellular matrix (ECM) that they secrete, and a complex and interactive dialogue exists between (myo)fibroblasts and their microenvironment. In addition to the secretion of the ECM, (myo)fibroblasts, by secreting matrix metalloproteinases and tissue inhibitors of metalloproteinases, are able to remodel this ECM. (Myo)fibroblasts and their microenvironment form an evolving network during tissue repair, with reciprocal actions leading to cell differentiation, proliferation, quiescence, or apoptosis, and actions on growth factor bioavailability by binding, sequestration, and activation. In addition, the (myo)fibroblast phenotype is regulated by mechanical stresses to which they are subjected and thus by mechanical signaling. In pathological situations (excessive scarring or fibrosis), or during aging, this dialogue between the (myo)fibroblasts and their microenvironment may be altered or disrupted, leading to repair defects or to injuries with damaged and/or cosmetic skin alterations such as wrinkle development. The intimate dialogue between the (myo)fibroblasts and their microenvironment therefore represents a fascinating domain that must be better understood in order not only to characterize new therapeutic targets and drugs able to prevent or treat pathological developments but also to interfere with skin alterations observed during normal aging or premature aging induced by a deleterious environment.

744 citations