scispace - formally typeset
Search or ask a question
Journal ArticleDOI

Best basis-based wavelet packet entropy feature extraction and hierarchical EEG classification for epileptic detection

01 Oct 2011-Expert Systems With Applications (Pergamon)-Vol. 38, Iss: 11, pp 14314-14320
TL;DR: The best classification accuracy is about 100% via 2, 5, and 10-fold cross-validation, which indicates the proposed method has potential in designing a new intelligent EEG-based assistance diagnosis system for early detection of the electroencephalographic changes.
Abstract: In this study, a hierarchical electroencephalogram (EEG) classification system for epileptic seizure detection is proposed. The system includes the following three stages: (i) original EEG signals representation by wavelet packet coefficients and feature extraction using the best basis-based wavelet packet entropy method, (ii) cross-validation (CV) method together with k-Nearest Neighbor (k-NN) classifier used in the training stage to hierarchical knowledge base (HKB) construction, and (iii) in the testing stage, computing classification accuracy and rejection rate using the top-ranked discriminative rules from the HKB. The data set is taken from a publicly available EEG database which aims to differentiate healthy subjects and subjects suffering from epilepsy diseases. Experimental results show the efficiency of our proposed system. The best classification accuracy is about 100% via 2-, 5-, and 10-fold cross-validation, which indicates the proposed method has potential in designing a new intelligent EEG-based assistance diagnosis system for early detection of the electroencephalographic changes.
Citations
More filters
Journal ArticleDOI
TL;DR: This review discusses various feature extraction methods and the results of different automated epilepsy stage detection techniques in detail, and briefly presents the various open ended challenges that need to be addressed before a CAD based epilepsy detection system can be set-up in a clinical setting.
Abstract: Epilepsy is an electrophysiological disorder of the brain, characterized by recurrent seizures. Electroencephalogram (EEG) is a test that measures and records the electrical activity of the brain, and is widely used in the detection and analysis of epileptic seizures. However, it is often difficult to identify subtle but critical changes in the EEG waveform by visual inspection, thus opening up a vast research area for biomedical engineers to develop and implement several intelligent algorithms for the identification of such subtle changes. Moreover, the EEG signals are nonlinear and non-stationary in nature, which contribute to further complexities related to their manual interpretation and detection of normal and abnormal (interictal and ictal) activities. Hence, it is necessary to develop a Computer Aided Diagnostic (CAD) system to automatically identify the normal and abnormal activities using minimum number of highly discriminating features in classifiers. It has been found that nonlinear features are able to capture the complex physiological phenomena such as abrupt transitions and chaotic behavior in the EEG signals. In this review, we discuss various feature extraction methods and the results of different automated epilepsy stage detection techniques in detail. We also briefly present the various open ended challenges that need to be addressed before a CAD based epilepsy detection system can be set-up in a clinical setting.

601 citations


Cites methods from "Best basis-based wavelet packet ent..."

  • ...[120] (wavelet packet entropy and KNN), Iscan et al....

    [...]

Journal ArticleDOI
TL;DR: A multiparadigm approach based on the integration of wavelets, nonlinear dynamics and chaos theory, and neural networks advanced by Adeli and associates is the most effective method for automated EEG-based diagnosis of epilepsy.
Abstract: Electroencephalography (EEG) is an important tool for studying the human brain activity and epileptic processes in particular. EEG signals provide important information about epileptogenic networks that must be analyzed and understood before the initiation of therapeutic procedures. Very small variations in EEG signals depict a definite type of brain abnormality. The challenge is to design and develop signal processing algorithms which extract this subtle information and use it for diagnosis, monitoring and treatment of patients with epilepsy. This paper presents a review of wavelet techniques for computer-aided seizure detection and epilepsy diagnosis with an emphasis on research reported during the past decade. A multiparadigm approach based on the integration of wavelets, nonlinear dynamics and chaos theory, and neural networks advanced by Adeli and associates is the most effective method for automated EEG-based diagnosis of epilepsy.

449 citations


Cites methods from "Best basis-based wavelet packet ent..."

  • ...The following features are used for the two class classification of epilepsy: Approximate Entropy (ApEn) on DWT coefficients [40,41], relative wavelet energy [42], line length feature [43], Principal Component Analysis (PCA), Independent Component Analysis (ICA) and Linear Discriminant Analysis (LDA) on DWT coefficients [44] and wavelet packet entropy [45]....

    [...]

Journal ArticleDOI
TL;DR: Different ranges for various entropies used to differentiate normal, interictal, and ictal EEG signals are proposed and ranked them depending on the ability to discrimination ability of three classes to classify the different stages of epilepsy.
Abstract: Epilepsy can be detected using EEG signals.The entropy indicates the complexity of the EEG signal.Various entropies are used to diagnose epilepsy.Unique ranges for various entropies are proposed. Epilepsy is the neurological disorder of the brain which is difficult to diagnose visually using Electroencephalogram (EEG) signals. Hence, an automated detection of epilepsy using EEG signals will be a useful tool in medical field. The automation of epilepsy detection using signal processing techniques such as wavelet transform and entropies may optimise the performance of the system. Many algorithms have been developed to diagnose the presence of seizure in the EEG signals. The entropy is a nonlinear parameter that reflects the complexity of the EEG signal. Many entropies have been used to differentiate normal, interictal and ictal EEG signals. This paper discusses various entropies used for an automated diagnosis of epilepsy using EEG signals. We have presented unique ranges for various entropies used to differentiate normal, interictal, and ictal EEG signals and also ranked them depending on the ability to discrimination ability of three classes. These entropies can be used to classify the different stages of epilepsy and can also be used for other biomedical applications.

361 citations

Journal ArticleDOI
05 Aug 2016-Entropy
TL;DR: This paper proposes a method to classify ECG signals using wavelet packet entropy (WPE) and random forests (RF) following the Association for the Advancement of Medical Instrumentation (AAMI) recommendations and the inter-patient scheme, and shows that WPE and RF is promising for ECG classification.
Abstract: The electrocardiogram (ECG) is one of the most important techniques for heart disease diagnosis. Many traditional methodologies of feature extraction and classification have been widely applied to ECG analysis. However, the effectiveness and efficiency of such methodologies remain to be improved, and much existing research did not consider the separation of training and testing samples from the same set of patients (so called inter-patient scheme). To cope with these issues, in this paper, we propose a method to classify ECG signals using wavelet packet entropy (WPE) and random forests (RF) following the Association for the Advancement of Medical Instrumentation (AAMI) recommendations and the inter-patient scheme. Specifically, we firstly decompose the ECG signals by wavelet packet decomposition (WPD), and then calculate entropy from the decomposed coefficients as representative features, and finally use RF to build an ECG classification model. To the best of our knowledge, it is the first time that WPE and RF are used to classify ECG following the AAMI recommendations and the inter-patient scheme. Extensive experiments are conducted on the publicly available MIT–BIH Arrhythmia database and influence of mother wavelets and level of decomposition for WPD, type of entropy and the number of base learners in RF on the performance are also discussed. The experimental results are superior to those by several state-of-the-art competing methods, showing that WPE and RF is promising for ECG classification.

347 citations


Cites background from "Best basis-based wavelet packet ent..."

  • ...Entropies from WPD have been demonstrated to have a powerful ability to represent the intrinsic characteristics of electroencephalogram (EEG) signals [35,36]....

    [...]

Journal ArticleDOI
TL;DR: It is observed that the quantitative value of fuzzy approximate entropy drops during the ictal period which proves that the epileptic EEG signal is more ordered than the EEG signal of a normal subject.

261 citations

References
More filters
Journal ArticleDOI
TL;DR: This final installment of the paper considers the case where the signals or the messages or both are continuously variable, in contrast with the discrete nature assumed until now.
Abstract: In this final installment of the paper we consider the case where the signals or the messages or both are continuously variable, in contrast with the discrete nature assumed until now. To a considerable extent the continuous case can be obtained through a limiting process from the discrete case by dividing the continuum of messages and signals into a large but finite number of small regions and calculating the various parameters involved on a discrete basis. As the size of the regions is decreased these parameters in general approach as limits the proper values for the continuous case. There are, however, a few new effects that appear and also a general change of emphasis in the direction of specialization of the general results to particular cases.

65,425 citations

Journal ArticleDOI
TL;DR: Adapted waveform analysis uses a library of orthonormal bases and an efficiency functional to match a basis to a given signal or family of signals, and relies heavily on the remarkable orthogonality properties of the new libraries.
Abstract: Adapted waveform analysis uses a library of orthonormal bases and an efficiency functional to match a basis to a given signal or family of signals. It permits efficient compression of a variety of signals, such as sound and images. The predefined libraries of modulated waveforms include orthogonal wavelet-packets and localized trigonometric functions, and have reasonably well-controlled time-frequency localization properties. The idea is to build out of the library functions an orthonormal basis relative to which the given signal or collection of signals has the lowest information cost. The method relies heavily on the remarkable orthogonality properties of the new libraries: all expansions in a given library conserve energy and are thus comparable. Several cost functionals are useful; one of the most attractive is Shannon entropy, which has a geometric interpretation in this context. >

3,307 citations


"Best basis-based wavelet packet ent..." refers background in this paper

  • ...Commonly, there are several useful entropy types such as Shannon, log energy, sure, threshold, etc. (Coifman & Wickerhauser, 1992) for calculating the lowest cost basis....

    [...]

Journal ArticleDOI
TL;DR: Dynamical properties of brain electrical activity from different recording regions and from different physiological and pathological brain states are compared and strongest indications of nonlinear deterministic dynamics were found for seizure activity.
Abstract: We compare dynamical properties of brain electrical activity from different recording regions and from different physiological and pathological brain states Using the nonlinear prediction error and an estimate of an effective correlation dimension in combination with the method of iterative amplitude adjusted surrogate data, we analyze sets of electroencephalographic (EEG) time series: surface EEG recordings from healthy volunteers with eyes closed and eyes open, and intracranial EEG recordings from epilepsy patients during the seizure free interval from within and from outside the seizure generating area as well as intracranial EEG recordings of epileptic seizures As a preanalysis step an inclusion criterion of weak stationarity was applied Surface EEG recordings with eyes open were compatible with the surrogates' null hypothesis of a Gaussian linear stochastic process Strongest indications of nonlinear deterministic dynamics were found for seizure activity Results of the other sets were found to be inbetween these two extremes

2,387 citations


"Best basis-based wavelet packet ent..." refers background in this paper

  • ...This session will give a short description and refer to Andrzejak et al. (2001) for further details....

    [...]

  • ...Band-pass filter settings were 0.53–40 Hz (12 dB/oct) (Andrzejak et al., 2001)....

    [...]

  • ...Names of the electrode positions are derived from their anatomical locations (Andrzejak et al., 2001)....

    [...]

Journal ArticleDOI
TL;DR: The International League Against Epilepsy (ILAE) and the International Bureau for Epilepsia (IBE) have come to consensus definitions for the terms epileptic seizure and epilepsy.
Abstract: The International League Against Epilepsy (ILAE) and the International Bureau for Epilepsy (IBE) have come to consensus definitions for the terms epileptic seizure and epilepsy. An epileptic seizure is a transient occurrence of signs and/or symptoms due to abnormal excessive or synchronous neuronal activity in the brain. Epilepsy is a disorder of the brain characterized by an enduring predisposition to generate epileptic seizures and by the neurobiologic, cognitive, psychological, and social consequences of this condition. The definition of epilepsy requires the occurrence of at least one epileptic seizure.

2,201 citations

Journal ArticleDOI
TL;DR: In this research, discrete Daubechies and harmonic wavelets are investigated for analysis of epileptic EEG records and the capability of this mathematical microscope to analyze different scales of neural rhythms is shown to be a powerful tool for investigating small-scale oscillations of the brain signals.

1,077 citations