scispace - formally typeset
Search or ask a question
Journal ArticleDOI

Beyond Tumor Mutation Burden: Tumor Neoantigen Burden as a Biomarker for Immunotherapy and Other Types of Therapy.

29 Apr 2021-Frontiers in Oncology (Frontiers Media SA)-Vol. 11, pp 672677-672677
TL;DR: In this paper, the potential application of tumor neoantigen burden (TNB) as a biomarker for immunotherapy and other types of therapy was evaluated and the mechanisms involved in TNB were investigated.
Abstract: Immunotherapy has significantly improved the clinical outcome of patients with cancer. However, the immune response rate varies greatly, possibly due to lack of effective biomarkers that can be used to distinguish responders from non-responders. Recently, clinical studies have associated high tumor neoantigen burden (TNB) with improved outcomes in patients treated with immunotherapy. Therefore, TNB has emerged as a biomarker for immunotherapy and other types of therapy. In the present review, the potential application of TNB as a biomarker was evaluated. The methods of neoantigen prediction were summarized and the mechanisms involved in TNB were investigated. The impact of high TNB and increased number of infiltrating immune cells on the efficacy of immunotherapy was also addressed. Finally, the future challenges of TNB were discussed.

Content maybe subject to copyright    Report

Citations
More filters
Journal ArticleDOI
TL;DR: In this article , the authors summarized the treatment strategies for metastatic colorectal cancer patients, discussed the mechanism and application of ICB in mCRC treatment, outlines the potential markers of the ICB efficacy, and collected the recent basic research results, in order to provide a theoretical basis and practical direction for immunotherapy strategies.
Abstract: Chemotherapy combined with or without targeted therapy is the fundamental treatment for metastatic colorectal cancer (mCRC). Due to the adverse effects of chemotherapeutic drugs and the biological characteristics of the tumor cells, it is difficult to make breakthroughs in traditional strategies. The immune checkpoint blockades (ICB) therapy has made significant progress in the treatment of advanced malignant tumors, and patients who benefit from this therapy may obtain a long-lasting response. Unfortunately, immunotherapy is only effective in a limited number of patients with microsatellite instability-high (MSI-H), and segment initial responders can subsequently develop acquired resistance. From September 4, 2014, the first anti-PD-1/PD-L1 drug Pembrolizumab was approved by the FDA for the second-line treatment of advanced malignant melanoma. Subsequently, it was approved for mCRC second-line treatment in 2017. Immunotherapy has rapidly developed in the past 7 years. The in-depth research of the ICB treatment indicated that the mechanism of colorectal cancer immune-resistance has become gradually clear, and new predictive biomarkers are constantly emerging. Clinical trials examining the effect of immune checkpoints are actively carried out, in order to produce long-lasting effects for mCRC patients. This review summarizes the treatment strategies for mCRC patients, discusses the mechanism and application of ICB in mCRC treatment, outlines the potential markers of the ICB efficacy, lists the key results of the clinical trials, and collects the recent basic research results, in order to provide a theoretical basis and practical direction for immunotherapy strategies.

44 citations

Journal ArticleDOI
TL;DR: The mechanisms by which hypoxia impacts immune cell functions and how that could translate to predicting response to immunotherapy in an era of machine learning and computational biology are highlighted.
Abstract: Hypoxia is an environmental stressor that is instigated by low oxygen availability. It fuels the progression of solid tumors by driving tumor plasticity, heterogeneity, stemness and genomic instability. Hypoxia metabolically reprograms the tumor microenvironment (TME), adding insult to injury to the acidic, nutrient deprived and poorly vascularized conditions that act to dampen immune cell function. Through its impact on key cancer hallmarks and by creating a physical barrier conducive to tumor survival, hypoxia modulates tumor cell escape from the mounted immune response. The tumor cell-immune cell crosstalk in the context of a hypoxic TME tips the balance towards a cold and immunosuppressed microenvironment that is resistant to immune checkpoint inhibitors (ICI). Nonetheless, evidence is emerging that could make hypoxia an asset for improving response to ICI. Tackling the tumor immune contexture has taken on an in silico, digitalized approach with an increasing number of studies applying bioinformatics to deconvolute the cellular and non-cellular elements of the TME. Such approaches have additionally been combined with signature-based proxies of hypoxia to further dissect the turbulent hypoxia-immune relationship. In this review we will be highlighting the mechanisms by which hypoxia impacts immune cell functions and how that could translate to predicting response to immunotherapy in an era of machine learning and computational biology.

18 citations

Journal ArticleDOI
27 Jan 2022-Cancers
TL;DR: The basic biology of ICIs and response prediction biomarkers are reviewed, as well as the latest clinical trials that focus on subgroup effectiveness based on biomarker status in gynecological cancer patients.
Abstract: Simple Summary Recently, cancer treatment has been revolutionized by introduction of immunotherapy—drugs that target body’s immune system to attack cancer. Most clinically used drugs stop the mechanisms that dampen immune response. These drugs are called immune checkpoint inhibitors (ICIs). ICIs in gynecological cancers are most effective for treating uterine endometrial cancer, but less so far ovarian, uterine cervical or vulvar cancer. However, combining ICIs with other drugs has yielded good results in some studies in these cancers. Stopping mechanisms that dampen immune response can produce severe side effects, as has been seen with the use of ICIs. Therefore, selection of patients that would benefit the most from ICI therapy is of paramount importance. This can be done by analysing tumour characteristics either by looking at protein expression, genetic changes and even constitution of faecal microbiota, these properties are called biomarkers. It is not entirely known which biomarkers predict response most accurately, and this varies by cancer type. In this article, we review mechanisms of action of ICIs, selected biomarkers and latest clinical trials of ICIs in gynecological cancers. Abstract In the last ten years, clinical oncology has been revolutionized by the introduction of oncological immunotherapy, mainly in the form of immune checkpoint inhibitors (ICIs) that transformed the standard of care of several advanced solid malignancies. Using ICIs for advanced gynecological cancers has yielded good results, especially for endometrial cancer. In ovarian or cervical cancer, combining ICIs with other established agents has shown some promise. Concurrently with the clinical development of ICIs, biomarkers that predict responses to such therapy have been discovered and used in clinical trials. The translation of these biomarkers to clinical practice was somewhat hampered by lacking assay standardization and non-comprehensive reporting of biomarker status in trials often performed on a small number of gynecological cancer patients. We can expect increased use of ICIs combined with other agents in gynecological cancer in the near future. This will create a need for reliable response prediction tools, which we believe will be based on biomarker, clinical, and tumor characteristics. In this article, we review the basic biology of ICIs and response prediction biomarkers, as well as the latest clinical trials that focus on subgroup effectiveness based on biomarker status in gynecological cancer patients.

14 citations

Journal ArticleDOI
TL;DR: It is demonstrated for the first time that cancer‐specific transcription‐induced chimeric RNAs can be exploited to produce a cell‐free cancer vaccine that induces potent CD8+ T cell‐mediated anticancer immunity.
Abstract: Abstract Cancer vaccines critically rely on the availability of targetable immunogenic cancer‐specific neoepitopes. However, mutation‐based immunogenic neoantigens are rare or even non‐existent in subgroups of cancer types. To address this issue, we exploited a cancer‐specific aberrant transcription‐induced chimeric RNA, designated A‐Pas chiRNA, as a possible source of clinically relevant and targetable neoantigens. A‐Pas chiRNA encodes a recently discovered cancer‐specific chimeric protein that comprises full‐length astrotactin‐2 (ASTN2) C‐terminally fused in‐frame to the antisense sequence of the 18th intron of pregnancy‐associated plasma protein‐A (PAPPA). We used extracellular vesicles (EVs) from A‐Pas chiRNA‐transfected dendritic cells (DCs) to produce the cell‐free anticancer vaccine DEXA‐P. Treatment of immunocompetent cancer‐bearing mice with DEXA‐P inhibited tumour growth and prolonged animal survival. In summary, we demonstrate for the first time that cancer‐specific transcription‐induced chimeric RNAs can be exploited to produce a cell‐free cancer vaccine that induces potent CD8+ T cell‐mediated anticancer immunity. Our novel approach may be particularly useful for developing cancer vaccines to treat malignancies with low mutational burden or without mutation‐based antigens. Moreover, this cell‐free anticancer vaccine approach may offer several practical advantages over cell‐based vaccines, such as ease of scalability and genetic modifiability as well as enhanced shelf life.

13 citations

Journal ArticleDOI
TL;DR: In this paper , the effects of physical activity on the cancer immunoediting process are discussed. But the extent to which physical activity alters these determinants to reduce the risk of clinically diagnosed cancers and whether physical activity changes these determinant in an interconnected or unrelated manner is unresolved.
Abstract: Undertaking a high volume of physical activity is associated with reduced risk of a broad range of clinically diagnosed cancers. These findings, which imply that physical activity induces physiological changes that avert or suppress neoplastic activity, are supported by preclinical intervention studies in rodents demonstrating that structured regular exercise commonly represses tumour growth. In Part 1 of this review, we summarise epidemiology and preclinical evidence linking physical activity or regular structured exercise with reduced cancer risk or tumour growth. Despite abundant evidence that physical activity commonly exerts anti-cancer effects, the mechanism(s)-of-action responsible for these beneficial outcomes is undefined and remains subject to ongoing speculation. In Part 2, we outline why altered immune regulation from physical activity - specifically to T cells - is likely an integral mechanism. We do this by first explaining how physical activity appears to modulate the cancer immunoediting process. In doing so, we highlight that augmented elimination of immunogenic cancer cells predominantly leads to the containment of cancers in a ‘precancerous’ or ‘covert’ equilibrium state, thus reducing the incidence of clinically diagnosed cancers among physically active individuals. In seeking to understand how physical activity might augment T cell function to avert cancer outgrowth, in Part 3 we appraise how physical activity affects the determinants of a successful T cell response against immunogenic cancer cells. Using the cancer immunogram as a basis for this evaluation, we assess the effects of physical activity on: (i) general T cell status in blood, (ii) T cell infiltration to tissues, (iii) presence of immune checkpoints associated with T cell exhaustion and anergy, (iv) presence of inflammatory inhibitors of T cells and (v) presence of metabolic inhibitors of T cells. The extent to which physical activity alters these determinants to reduce the risk of clinically diagnosed cancers – and whether physical activity changes these determinants in an interconnected or unrelated manner – is unresolved. Accordingly, we analyse how physical activity might alter each determinant, and we show how these changes may interconnect to explain how physical activity alters T cell regulation to prevent cancer outgrowth.

7 citations

References
More filters
Journal ArticleDOI
Ludmil B. Alexandrov1, Serena Nik-Zainal2, Serena Nik-Zainal3, David C. Wedge1, Samuel Aparicio4, Sam Behjati1, Sam Behjati5, Andrew V. Biankin, Graham R. Bignell1, Niccolo Bolli1, Niccolo Bolli5, Åke Borg2, Anne Lise Børresen-Dale6, Anne Lise Børresen-Dale7, Sandrine Boyault8, Birgit Burkhardt8, Adam Butler1, Carlos Caldas9, Helen Davies1, Christine Desmedt, Roland Eils5, Jorunn E. Eyfjord10, John A. Foekens11, Mel Greaves12, Fumie Hosoda13, Barbara Hutter5, Tomislav Ilicic1, Sandrine Imbeaud14, Sandrine Imbeaud15, Marcin Imielinsk14, Natalie Jäger5, David T. W. Jones16, David T. Jones1, Stian Knappskog11, Stian Knappskog17, Marcel Kool11, Sunil R. Lakhani18, Carlos López-Otín18, Sancha Martin1, Nikhil C. Munshi19, Nikhil C. Munshi20, Hiromi Nakamura13, Paul A. Northcott16, Marina Pajic21, Elli Papaemmanuil1, Angelo Paradiso22, John V. Pearson23, Xose S. Puente18, Keiran Raine1, Manasa Ramakrishna1, Andrea L. Richardson19, Andrea L. Richardson22, Julia Richter22, Philip Rosenstiel22, Matthias Schlesner5, Ton N. Schumacher24, Paul N. Span25, Jon W. Teague1, Yasushi Totoki13, Andrew Tutt24, Rafael Valdés-Mas18, Marit M. van Buuren25, Laura van ’t Veer26, Anne Vincent-Salomon27, Nicola Waddell23, Lucy R. Yates1, Icgc PedBrain24, Jessica Zucman-Rossi14, Jessica Zucman-Rossi15, P. Andrew Futreal1, Ultan McDermott1, Peter Lichter24, Matthew Meyerson14, Matthew Meyerson19, Sean M. Grimmond23, Reiner Siebert22, Elias Campo28, Tatsuhiro Shibata13, Stefan M. Pfister11, Stefan M. Pfister16, Peter J. Campbell29, Peter J. Campbell3, Peter J. Campbell30, Michael R. Stratton31, Michael R. Stratton3 
22 Aug 2013-Nature
TL;DR: It is shown that hypermutation localized to small genomic regions, ‘kataegis’, is found in many cancer types, and this results reveal the diversity of mutational processes underlying the development of cancer.
Abstract: All cancers are caused by somatic mutations; however, understanding of the biological processes generating these mutations is limited. The catalogue of somatic mutations from a cancer genome bears the signatures of the mutational processes that have been operative. Here we analysed 4,938,362 mutations from 7,042 cancers and extracted more than 20 distinct mutational signatures. Some are present in many cancer types, notably a signature attributed to the APOBEC family of cytidine deaminases, whereas others are confined to a single cancer class. Certain signatures are associated with age of the patient at cancer diagnosis, known mutagenic exposures or defects in DNA maintenance, but many are of cryptic origin. In addition to these genome-wide mutational signatures, hypermutation localized to small genomic regions, 'kataegis', is found in many cancer types. The results reveal the diversity of mutational processes underlying the development of cancer, with potential implications for understanding of cancer aetiology, prevention and therapy.

7,904 citations

Journal ArticleDOI
03 Apr 2015-Science
TL;DR: Treatment efficacy was associated with a higher number of mutations in the tumors, and a tumor-specific T cell response paralleled tumor regression in one patient, suggesting that the genomic landscape of lung cancers shapes response to anti–PD-1 therapy.
Abstract: Immune checkpoint inhibitors, which unleash a patient’s own T cells to kill tumors, are revolutionizing cancer treatment. To unravel the genomic determinants of response to this therapy, we used whole-exome sequencing of non–small cell lung cancers treated with pembrolizumab, an antibody targeting programmed cell death-1 (PD-1). In two independent cohorts, higher nonsynonymous mutation burden in tumors was associated with improved objective response, durable clinical benefit, and progression-free survival. Efficacy also correlated with the molecular smoking signature, higher neoantigen burden, and DNA repair pathway mutations; each factor was also associated with mutation burden. In one responder, neoantigen-specific CD8+ T cell responses paralleled tumor regression, suggesting that anti–PD-1 therapy enhances neoantigen-specific T cell reactivity. Our results suggest that the genomic landscape of lung cancers shapes response to anti–PD-1 therapy.

6,215 citations

Journal ArticleDOI
Michael S. Lawrence1, Petar Stojanov1, Petar Stojanov2, Paz Polak1, Paz Polak2, Paz Polak3, Gregory V. Kryukov1, Gregory V. Kryukov2, Gregory V. Kryukov3, Kristian Cibulskis1, Andrey Sivachenko1, Scott L. Carter1, Chip Stewart1, Craig H. Mermel1, Craig H. Mermel2, Steven A. Roberts4, Adam Kiezun1, Peter S. Hammerman1, Peter S. Hammerman2, Aaron McKenna5, Aaron McKenna1, Yotam Drier, Lihua Zou1, Alex H. Ramos1, Trevor J. Pugh2, Trevor J. Pugh1, Nicolas Stransky1, Elena Helman6, Elena Helman1, Jaegil Kim1, Carrie Sougnez1, Lauren Ambrogio1, Elizabeth Nickerson1, Erica Shefler1, Maria L. Cortes1, Daniel Auclair1, Gordon Saksena1, Douglas Voet1, Michael S. Noble1, Daniel DiCara1, Pei Lin1, Lee Lichtenstein1, David I. Heiman1, Timothy Fennell1, Marcin Imielinski2, Marcin Imielinski1, Bryan Hernandez1, Eran Hodis2, Eran Hodis1, Sylvan C. Baca1, Sylvan C. Baca2, Austin M. Dulak1, Austin M. Dulak2, Jens G. Lohr2, Jens G. Lohr1, Dan A. Landau1, Dan A. Landau2, Dan A. Landau7, Catherine J. Wu2, Jorge Melendez-Zajgla, Alfredo Hidalgo-Miranda, Amnon Koren1, Amnon Koren2, Steven A. McCarroll2, Steven A. McCarroll1, Jaume Mora8, Ryan S. Lee9, Ryan S. Lee2, Brian D. Crompton9, Brian D. Crompton2, Robert C. Onofrio1, Melissa Parkin1, Wendy Winckler1, Kristin G. Ardlie1, Stacey Gabriel1, Charles W. M. Roberts9, Charles W. M. Roberts2, Jaclyn A. Biegel10, Kimberly Stegmaier2, Kimberly Stegmaier9, Kimberly Stegmaier1, Adam J. Bass2, Adam J. Bass1, Levi A. Garraway1, Levi A. Garraway2, Matthew Meyerson1, Matthew Meyerson2, Todd R. Golub, Dmitry A. Gordenin4, Shamil R. Sunyaev1, Shamil R. Sunyaev3, Shamil R. Sunyaev2, Eric S. Lander2, Eric S. Lander6, Eric S. Lander1, Gad Getz2, Gad Getz1 
11 Jul 2013-Nature
TL;DR: A fundamental problem with cancer genome studies is described: as the sample size increases, the list of putatively significant genes produced by current analytical methods burgeons into the hundreds and the list includes many implausible genes, suggesting extensive false-positive findings that overshadow true driver events.
Abstract: Major international projects are underway that are aimed at creating a comprehensive catalogue of all the genes responsible for the initiation and progression of cancer. These studies involve the sequencing of matched tumour-normal samples followed by mathematical analysis to identify those genes in which mutations occur more frequently than expected by random chance. Here we describe a fundamental problem with cancer genome studies: as the sample size increases, the list of putatively significant genes produced by current analytical methods burgeons into the hundreds. The list includes many implausible genes (such as those encoding olfactory receptors and the muscle protein titin), suggesting extensive false-positive findings that overshadow true driver events. We show that this problem stems largely from mutational heterogeneity and provide a novel analytical methodology, MutSigCV, for resolving the problem. We apply MutSigCV to exome sequences from 3,083 tumour-normal pairs and discover extraordinary variation in mutation frequency and spectrum within cancer types, which sheds light on mutational processes and disease aetiology, and in mutation frequency across the genome, which is strongly correlated with DNA replication timing and also with transcriptional activity. By incorporating mutational heterogeneity into the analyses, MutSigCV is able to eliminate most of the apparent artefactual findings and enable the identification of genes truly associated with cancer.

4,411 citations

Journal ArticleDOI
03 Apr 2015-Science
TL;DR: Observations indicate that neoantigen load may form a biomarker in cancer immunotherapy and provide an incentive for the development of novel therapeutic approaches that selectively enhance T cell reactivity against this class of antigens.
Abstract: The clinical relevance of T cells in the control of a diverse set of human cancers is now beyond doubt. However, the nature of the antigens that allow the immune system to distinguish cancer cells from noncancer cells has long remained obscure. Recent technological innovations have made it possible to dissect the immune response to patient-specific neoantigens that arise as a consequence of tumor-specific mutations, and emerging data suggest that recognition of such neoantigens is a major factor in the activity of clinical immunotherapies. These observations indicate that neoantigen load may form a biomarker in cancer immunotherapy and provide an incentive for the development of novel therapeutic approaches that selectively enhance T cell reactivity against this class of antigens.

3,625 citations

Journal ArticleDOI
22 Feb 2018-Nature
TL;DR: Tumours from a large cohort of patients with metastatic urothelial cancer who were treated with an anti-PD-L1 agent were examined and major determinants of clinical outcome were identified and suggested that TGFβ shapes the tumour microenvironment to restrain anti-tumour immunity by restricting T-cell infiltration.
Abstract: Therapeutic antibodies that block the programmed death-1 (PD-1)-programmed death-ligand 1 (PD-L1) pathway can induce robust and durable responses in patients with various cancers, including metastatic urothelial cancer. However, these responses only occur in a subset of patients. Elucidating the determinants of response and resistance is key to improving outcomes and developing new treatment strategies. Here we examined tumours from a large cohort of patients with metastatic urothelial cancer who were treated with an anti-PD-L1 agent (atezolizumab) and identified major determinants of clinical outcome. Response to treatment was associated with CD8+ T-effector cell phenotype and, to an even greater extent, high neoantigen or tumour mutation burden. Lack of response was associated with a signature of transforming growth factor β (TGFβ) signalling in fibroblasts. This occurred particularly in patients with tumours, which showed exclusion of CD8+ T cells from the tumour parenchyma that were instead found in the fibroblast- and collagen-rich peritumoural stroma; a common phenotype among patients with metastatic urothelial cancer. Using a mouse model that recapitulates this immune-excluded phenotype, we found that therapeutic co-administration of TGFβ-blocking and anti-PD-L1 antibodies reduced TGFβ signalling in stromal cells, facilitated T-cell penetration into the centre of tumours, and provoked vigorous anti-tumour immunity and tumour regression. Integration of these three independent biological features provides the best basis for understanding patient outcome in this setting and suggests that TGFβ shapes the tumour microenvironment to restrain anti-tumour immunity by restricting T-cell infiltration.

2,808 citations