scispace - formally typeset
Journal ArticleDOI

Bifunctional Transition Metal Hydroxysulfides: Room-Temperature Sulfurization and Their Applications in Zn-Air Batteries.

Hao-Fan Wang, +4 more
- 01 Sep 2017 - 
- Vol. 29, Iss: 35, pp 1702327
Reads0
Chats0
TLDR
Transition metal hydroxysulfides are presented as bifunctional OER/ORR electrocatalysts for Zn-air batteries with high intrinsic reactivity and electrical conductivity and a long cycling life, which is much better than Pt and Ir-based electrocatalyst in Zn -air batteries.
Abstract
Bifunctional electrocatalysis for oxygen evolution reaction (OER) and oxygen reduction reaction (ORR) constitutes the bottleneck of various sustainable energy devices and systems like rechargeable metal–air batteries. Emerging catalyst materials are strongly requested toward superior electrocatalytic activities and practical applications. In this study, transition metal hydroxysulfides are presented as bifunctional OER/ORR electrocatalysts for Zn–air batteries. By simply immersing Co-based hydroxide precursor into solution with high-concentration S2−, transition metal hydroxides convert to hydroxysulfides with excellent morphology preservation at room temperature. The as-obtained Co-based metal hydroxysulfides are with high intrinsic reactivity and electrical conductivity. The electron structure of the active sites is adjusted by anion modulation. The potential for 10 mA cm−2 OER current density is 1.588 V versus reversible hydrogen electrode (RHE), and the ORR half-wave potential is 0.721 V versus RHE, with a potential gap of 0.867 V for bifunctional oxygen electrocatalysis. The Co3FeS1.5(OH)6 hydroxysulfides are employed in the air electrode for a rechargeable Zn–air battery with a small overpotential of 0.86 V at 20.0 mA cm−2, a high specific capacity of 898 mAh g−1, and a long cycling life, which is much better than Pt and Ir-based electrocatalyst in Zn–air batteries.

read more

Citations
More filters
Journal ArticleDOI

MOF-derived electrocatalysts for oxygen reduction, oxygen evolution and hydrogen evolution reactions

TL;DR: A wide range of applications based on these materials for ORR, OER, HER and multifunctional electrocatalysis are discussed, with an emphasis on the required features of MOF-derived carbon-based materials for the Electrocatalysis of corresponding reactions.
Journal ArticleDOI

A Review of Electrocatalytic Reduction of Dinitrogen to Ammonia under Ambient Conditions

TL;DR: In this paper, the authors summarized the recent progress on the electrochemical nitrogen reduction reaction (NRR) at ambient temperature and pressure from both theoretical and experimental aspects, aiming at extracting instructive perceptions for future NRR research activities.
Journal ArticleDOI

Advanced Carbon for Flexible and Wearable Electronics.

TL;DR: The latest advances in the rational design and controlled fabrication of carbon materials toward applications in flexible and wearable electronics are reviewed and various carbon materials with controlled micro/nanostructures and designed macroscopic morphologies for high-performance flexible electronics are introduced.
Journal ArticleDOI

Advanced Architectures and Relatives of Air Electrodes in Zn-Air Batteries.

TL;DR: A perspective for design, preparation, and assembly of air electrodes is proposed for the future innovations of Zn–air batteries with high performance.
References
More filters
Journal ArticleDOI

Electrocatalysis for the oxygen evolution reaction: recent development and future perspectives

TL;DR: This review acquaints some materials for performing OER activity, in which the metal oxide materials build the basis of OER mechanism while non-oxide materials exhibit greatly promising performance toward overall water-splitting.
Journal ArticleDOI

Design of electrocatalysts for oxygen- and hydrogen-involving energy conversion reactions

TL;DR: The emphasis of this review is on the origin of the electrocatalytic activity of nanostructured catalysts toward a series of key clean energy conversion reactions by correlating the apparent electrode performance with their intrinsic electrochemical properties.
PatentDOI

Metal-free bifunctional electrocatalyst for oxygen reduction and oxygen evolution reactions

TL;DR: A mesoporous carbon foam co-doped with nitrogen and phosphorus that has a large surface area and good electrocatalytic properties for both ORR and OER and is tested as an air electrode for primary and rechargeable Zn-air batteries.
Journal ArticleDOI

Metal–air batteries: from oxygen reduction electrochemistry to cathode catalysts

TL;DR: The battery electrochemistry and catalytic mechanism of oxygen reduction reactions are discussed on the basis of aqueous and organic electrolytes, and the design and optimization of air-electrode structure are outlined.
Journal ArticleDOI

Recent Progress in Cobalt‐Based Heterogeneous Catalysts for Electrochemical Water Splitting

TL;DR: Current progress in this field is summarized here, especially highlighting several important bifunctional catalysts, and various approaches to improve or optimize the electrocatalysts are introduced.
Related Papers (5)